Normalized defining polynomial
\( x^{16} - 4 x^{14} - 4 x^{13} + 10 x^{12} + 9 x^{11} - 14 x^{10} - 18 x^{9} + 7 x^{8} + 23 x^{7} + \cdots + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[4, 6]$ |
| |
| Discriminant: |
\(60371254156640625\)
\(\medspace = 3^{4}\cdot 5^{8}\cdot 11^{4}\cdot 19^{4}\)
|
| |
| Root discriminant: | \(11.19\) |
| |
| Galois root discriminant: | $3^{1/2}5^{1/2}11^{1/2}19^{1/2}\approx 55.991070716677676$ | ||
| Ramified primes: |
\(3\), \(5\), \(11\), \(19\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8868583}a^{15}+\frac{2946792}{8868583}a^{14}-\frac{14240}{99647}a^{13}+\frac{2678006}{8868583}a^{12}+\frac{4314455}{8868583}a^{11}-\frac{4001605}{8868583}a^{10}+\frac{938784}{8868583}a^{9}-\frac{2520029}{8868583}a^{8}+\frac{255093}{8868583}a^{7}-\frac{3951984}{8868583}a^{6}-\frac{1491866}{8868583}a^{5}-\frac{120697}{8868583}a^{4}-\frac{3301401}{8868583}a^{3}+\frac{832160}{8868583}a^{2}+\frac{3756888}{8868583}a+\frac{52821}{8868583}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{5241478}{8868583}a^{15}-\frac{5319973}{8868583}a^{14}-\frac{153957}{99647}a^{13}-\frac{4736050}{8868583}a^{12}+\frac{50224126}{8868583}a^{11}-\frac{19354194}{8868583}a^{10}-\frac{46646134}{8868583}a^{9}-\frac{13020071}{8868583}a^{8}+\frac{45642957}{8868583}a^{7}+\frac{23434918}{8868583}a^{6}-\frac{11289520}{8868583}a^{5}+\frac{18566722}{8868583}a^{4}-\frac{10064155}{8868583}a^{3}-\frac{15895746}{8868583}a^{2}+\frac{3741758}{8868583}a-\frac{8183239}{8868583}$, $\frac{224064}{8868583}a^{15}-\frac{4870245}{8868583}a^{14}+\frac{25580}{99647}a^{13}+\frac{14147770}{8868583}a^{12}+\frac{11892371}{8868583}a^{11}-\frac{46224335}{8868583}a^{10}-\frac{6222001}{8868583}a^{9}+\frac{50376086}{8868583}a^{8}+\frac{43483432}{8868583}a^{7}-\frac{40279090}{8868583}a^{6}-\frac{52044486}{8868583}a^{5}-\frac{3543041}{8868583}a^{4}+\frac{12262949}{8868583}a^{3}+\frac{21746414}{8868583}a^{2}+\frac{12928804}{8868583}a-\frac{4273761}{8868583}$, $\frac{2863568}{8868583}a^{15}-\frac{2159065}{8868583}a^{14}-\frac{161215}{99647}a^{13}-\frac{2566109}{8868583}a^{12}+\frac{45326885}{8868583}a^{11}+\frac{15221668}{8868583}a^{10}-\frac{79480644}{8868583}a^{9}-\frac{32576534}{8868583}a^{8}+\frac{77393110}{8868583}a^{7}+\frac{86841234}{8868583}a^{6}-\frac{27832456}{8868583}a^{5}-\frac{59730301}{8868583}a^{4}-\frac{27546679}{8868583}a^{3}-\frac{23768054}{8868583}a^{2}+\frac{25305319}{8868583}a+\frac{20579429}{8868583}$, $\frac{1037116}{8868583}a^{15}-\frac{1781426}{8868583}a^{14}-\frac{49264}{99647}a^{13}+\frac{2126837}{8868583}a^{12}+\frac{17707794}{8868583}a^{11}-\frac{4207666}{8868583}a^{10}-\frac{27214877}{8868583}a^{9}+\frac{145153}{8868583}a^{8}+\frac{28938064}{8868583}a^{7}+\frac{20743970}{8868583}a^{6}-\frac{16239693}{8868583}a^{5}-\frac{14477973}{8868583}a^{4}-\frac{24223540}{8868583}a^{3}-\frac{8572668}{8868583}a^{2}+\frac{14268371}{8868583}a+\frac{9135628}{8868583}$, $\frac{17561319}{8868583}a^{15}-\frac{10965300}{8868583}a^{14}-\frac{665712}{99647}a^{13}-\frac{33038114}{8868583}a^{12}+\frac{182941759}{8868583}a^{11}+\frac{27990632}{8868583}a^{10}-\frac{233129244}{8868583}a^{9}-\frac{147713109}{8868583}a^{8}+\frac{177325703}{8868583}a^{7}+\frac{241818309}{8868583}a^{6}-\frac{10261804}{8868583}a^{5}-\frac{51525258}{8868583}a^{4}-\frac{102404529}{8868583}a^{3}-\frac{81037267}{8868583}a^{2}+\frac{45343615}{8868583}a+\frac{23597763}{8868583}$, $\frac{1750413}{8868583}a^{15}+\frac{2123551}{8868583}a^{14}-\frac{80893}{99647}a^{13}-\frac{14925500}{8868583}a^{12}+\frac{9660516}{8868583}a^{11}+\frac{34126365}{8868583}a^{10}-\frac{8894861}{8868583}a^{9}-\frac{53446603}{8868583}a^{8}-\frac{15050641}{8868583}a^{7}+\frac{41336519}{8868583}a^{6}+\frac{52440939}{8868583}a^{5}+\frac{15523531}{8868583}a^{4}-\frac{11071481}{8868583}a^{3}-\frac{32207087}{8868583}a^{2}-\frac{19648420}{8868583}a+\frac{3587298}{8868583}$, $a$, $\frac{6354633}{8868583}a^{15}-\frac{9602589}{8868583}a^{14}-\frac{234279}{99647}a^{13}+\frac{7623341}{8868583}a^{12}+\frac{85890495}{8868583}a^{11}-\frac{38258891}{8868583}a^{10}-\frac{117231917}{8868583}a^{9}+\frac{7849998}{8868583}a^{8}+\frac{138086708}{8868583}a^{7}+\frac{68939633}{8868583}a^{6}-\frac{91562915}{8868583}a^{5}-\frac{56687110}{8868583}a^{4}-\frac{26539353}{8868583}a^{3}-\frac{7456713}{8868583}a^{2}+\frac{48695497}{8868583}a+\frac{8808892}{8868583}$, $\frac{11301227}{8868583}a^{15}-\frac{6366601}{8868583}a^{14}-\frac{464303}{99647}a^{13}-\frac{21866527}{8868583}a^{12}+\frac{123809249}{8868583}a^{11}+\frac{31050500}{8868583}a^{10}-\frac{172309345}{8868583}a^{9}-\frac{102799586}{8868583}a^{8}+\frac{130994961}{8868583}a^{7}+\frac{181761122}{8868583}a^{6}-\frac{12812776}{8868583}a^{5}-\frac{53866985}{8868583}a^{4}-\frac{63838432}{8868583}a^{3}-\frac{64673204}{8868583}a^{2}+\frac{25321708}{8868583}a+\frac{15526803}{8868583}$
|
| |
| Regulator: | \( 73.3855457794 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 73.3855457794 \cdot 1}{2\cdot\sqrt{60371254156640625}}\cr\approx \mathstrut & 0.147016008228 \end{aligned}\]
Galois group
$D_4^2:C_2^2$ (as 16T602):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $D_4^2:C_2^2$ |
| Character table for $D_4^2:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.275.1, 4.2.475.1, 4.4.5225.1, 8.2.12931875.2, 8.2.12931875.1, 8.4.27300625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.0.13545904672265625.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/23.2.0.1}{2} }^{8}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(5\)
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(11\)
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(19\)
| 19.2.1.0a1.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 19.2.1.0a1.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 19.2.1.0a1.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 19.2.1.0a1.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 19.2.2.2a1.2 | $x^{4} + 36 x^{3} + 328 x^{2} + 72 x + 23$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 19.2.2.2a1.2 | $x^{4} + 36 x^{3} + 328 x^{2} + 72 x + 23$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |