Normalized defining polynomial
\( x^{16} - x^{15} - 6 x^{14} + 6 x^{13} + 11 x^{12} - 13 x^{11} - 2 x^{10} + 15 x^{9} - 9 x^{8} - 15 x^{7} + \cdots + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[4, 6]$ |
| |
| Discriminant: |
\(311502095702824709\)
\(\medspace = 23^{2}\cdot 563^{4}\cdot 5861\)
|
| |
| Root discriminant: | \(12.40\) |
| |
| Galois root discriminant: | $23^{1/2}563^{1/2}5861^{1/2}\approx 8711.721356884642$ | ||
| Ramified primes: |
\(23\), \(563\), \(5861\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5861}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a^{15}+2a^{14}-8a^{13}-11a^{12}+22a^{11}+14a^{10}-24a^{9}+17a^{8}+20a^{7}-29a^{6}-34a^{5}-17a^{4}+24a^{3}+17a^{2}-5a-3$, $10a^{15}+3a^{14}-66a^{13}-18a^{12}+144a^{11}+11a^{10}-99a^{9}+118a^{8}+53a^{7}-191a^{6}-194a^{5}-17a^{4}+162a^{3}+85a^{2}-36a-22$, $a^{15}-a^{14}-5a^{13}+5a^{12}+6a^{11}-8a^{10}+4a^{9}+7a^{8}-5a^{7}-8a^{6}-7a^{5}+5a^{4}+4a^{3}-a^{2}-2a$, $13a^{15}-3a^{14}-83a^{13}+18a^{12}+170a^{11}-59a^{10}-84a^{9}+164a^{8}-13a^{7}-221a^{6}-167a^{5}+53a^{4}+195a^{3}+46a^{2}-52a-18$, $11a^{15}+2a^{14}-73a^{13}-11a^{12}+159a^{11}-5a^{10}-104a^{9}+134a^{8}+40a^{7}-208a^{6}-197a^{5}+3a^{4}+184a^{3}+82a^{2}-44a-24$, $9a^{15}-6a^{14}-53a^{13}+33a^{12}+93a^{11}-66a^{10}-15a^{9}+91a^{8}-39a^{7}-117a^{6}-90a^{5}+62a^{4}+105a^{3}+12a^{2}-27a-11$, $a^{15}+2a^{14}-8a^{13}-11a^{12}+22a^{11}+14a^{10}-24a^{9}+17a^{8}+20a^{7}-29a^{6}-34a^{5}-17a^{4}+24a^{3}+18a^{2}-5a-4$, $9a^{15}-2a^{14}-57a^{13}+12a^{12}+114a^{11}-38a^{10}-51a^{9}+105a^{8}-7a^{7}-143a^{6}-125a^{5}+32a^{4}+131a^{3}+35a^{2}-32a-14$
|
| |
| Regulator: | \( 191.193924186 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 191.193924186 \cdot 1}{2\cdot\sqrt{311502095702824709}}\cr\approx \mathstrut & 0.168621441542 \end{aligned}\]
Galois group
$C_4^4.C_2\wr S_4$ (as 16T1879):
| A solvable group of order 98304 |
| The 190 conjugacy class representatives for $C_4^4.C_2\wr S_4$ |
| Character table for $C_4^4.C_2\wr S_4$ |
Intermediate fields
| 4.2.563.1, 8.2.7290287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }{,}\,{\href{/padicField/2.4.0.1}{4} }^{2}$ | ${\href{/padicField/3.6.0.1}{6} }^{2}{,}\,{\href{/padicField/3.4.0.1}{4} }$ | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{4}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/29.4.0.1}{4} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | $16$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(23\)
| 23.3.1.0a1.1 | $x^{3} + 2 x + 18$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 23.3.1.0a1.1 | $x^{3} + 2 x + 18$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 23.2.2.2a1.2 | $x^{4} + 42 x^{3} + 451 x^{2} + 210 x + 48$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 23.6.1.0a1.1 | $x^{6} + x^{4} + 9 x^{3} + 9 x^{2} + x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
|
\(563\)
| $\Q_{563}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{563}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
|
\(5861\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $12$ | $1$ | $12$ | $0$ | $C_{12}$ | $$[\ ]^{12}$$ |