Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1879$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,7,3,10,13,16,12,2,5,8,4,9,14,15,11), (1,15,10,7)(2,16,9,8)(3,6)(4,5)(11,14,12,13), (1,16,12)(2,15,11)(3,9,8)(4,10,7)(5,13)(6,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ 8: $C_2^3$ 12: $D_{6}$ x 3 24: $S_4$, $S_3 \times C_2^2$ 48: $S_4\times C_2$ x 3 96: 12T48 192: $V_4^2:(S_3\times C_2)$ x 3 384: $C_2 \wr S_4$ x 6, 12T136 x 3 768: 16T1045 x 3 1536: 24T4591 3072: 24T5576 x 3 6144: 16T1664 12288: 32T722139 49152: 48T? Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $S_4$
Degree 8: $C_2 \wr S_4$
Low degree siblings
16T1879 x 15, 32T1832455 x 8, 32T1832456 x 8, 32T1832457 x 8, 32T1832458 x 8, 32T1832459 x 8, 32T1832460 x 8, 32T1832461 x 8, 32T1832462 x 8, 32T1832463 x 8, 32T1832464 x 8, 32T1832465 x 8, 32T1832466 x 8, 32T1832467 x 8, 32T1832468 x 8, 32T1832469 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 190 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $98304=2^{15} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |