Normalized defining polynomial
\( x^{16} - x^{15} - 5 x^{14} + 12 x^{13} - 2 x^{12} - 22 x^{11} + 28 x^{10} - 4 x^{9} - 13 x^{8} + \cdots + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[4, 6]$ |
| |
| Discriminant: |
\(289217423320703125\)
\(\medspace = 5^{8}\cdot 29^{4}\cdot 61\cdot 131^{2}\)
|
| |
| Root discriminant: | \(12.34\) |
| |
| Galois root discriminant: | $5^{1/2}29^{1/2}61^{1/2}131^{1/2}\approx 1076.4269599002062$ | ||
| Ramified primes: |
\(5\), \(29\), \(61\), \(131\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{61}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$12a^{15}-8a^{14}-67a^{13}+120a^{12}+39a^{11}-270a^{10}+209a^{9}+83a^{8}-135a^{7}-138a^{6}+293a^{5}-108a^{4}-105a^{3}+93a^{2}-a-16$, $13a^{15}+3a^{14}-66a^{13}+71a^{12}+84a^{11}-195a^{10}+82a^{9}+100a^{8}-41a^{7}-148a^{6}+177a^{5}-13a^{4}-76a^{3}+38a^{2}+8a-5$, $11a^{15}-3a^{14}-58a^{13}+88a^{12}+45a^{11}-207a^{10}+146a^{9}+66a^{8}-83a^{7}-120a^{6}+217a^{5}-74a^{4}-73a^{3}+62a^{2}-a-10$, $a^{14}-5a^{12}+7a^{11}+5a^{10}-17a^{9}+11a^{8}+7a^{7}-6a^{6}-10a^{5}+18a^{4}-4a^{3}-6a^{2}+5a$, $7a^{15}-a^{14}-39a^{13}+51a^{12}+46a^{11}-137a^{10}+64a^{9}+78a^{8}-57a^{7}-90a^{6}+128a^{5}-9a^{4}-74a^{3}+39a^{2}+8a-9$, $5a^{15}+7a^{14}-22a^{13}-a^{12}+54a^{11}-31a^{10}-38a^{9}+51a^{8}+28a^{7}-55a^{6}+2a^{5}+49a^{4}-19a^{3}-10a^{2}+8a+3$, $5a^{15}-5a^{14}-30a^{13}+56a^{12}+13a^{11}-124a^{10}+101a^{9}+32a^{8}-69a^{7}-58a^{6}+136a^{5}-57a^{4}-50a^{3}+46a^{2}-3a-9$, $4a^{15}-7a^{14}-24a^{13}+63a^{12}-6a^{11}-127a^{10}+131a^{9}+21a^{8}-90a^{7}-43a^{6}+156a^{5}-81a^{4}-51a^{3}+59a^{2}-5a-11$, $a^{15}-4a^{13}+7a^{12}-a^{11}-12a^{10}+19a^{9}-8a^{8}-3a^{7}-2a^{6}+17a^{5}-19a^{4}+5a^{3}+6a^{2}-4a$
|
| |
| Regulator: | \( 181.198740019 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 181.198740019 \cdot 1}{2\cdot\sqrt{289217423320703125}}\cr\approx \mathstrut & 0.165848727732 \end{aligned}\]
Galois group
$C_4^4.C_2\wr D_4$ (as 16T1823):
| A solvable group of order 32768 |
| The 230 conjugacy class representatives for $C_4^4.C_2\wr D_4$ |
| Character table for $C_4^4.C_2\wr D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.6.68856875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.2.134673762004296875.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{6}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | $16$ | ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | $16$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(29\)
| 29.8.1.0a1.1 | $x^{8} + 3 x^{4} + 24 x^{3} + 26 x^{2} + 23 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ |
| 29.4.2.4a1.2 | $x^{8} + 4 x^{6} + 30 x^{5} + 8 x^{4} + 60 x^{3} + 233 x^{2} + 60 x + 33$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(61\)
| $\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 61.2.1.0a1.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 61.2.1.0a1.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 61.2.1.0a1.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 61.2.1.0a1.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 61.1.2.1a1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 61.4.1.0a1.1 | $x^{4} + 3 x^{2} + 40 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(131\)
| 131.1.2.1a1.1 | $x^{2} + 131$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 131.1.2.1a1.1 | $x^{2} + 131$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 131.4.1.0a1.1 | $x^{4} + 9 x^{2} + 109 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 131.8.1.0a1.1 | $x^{8} + 3 x^{4} + 72 x^{3} + 116 x^{2} + 104 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ |