Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1823$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $8$ | |
| Generators: | (1,2)(3,4)(5,14,6,13), (15,16), (1,4,6,15,2,3,5,16)(7,9,11,13)(8,10,12,14), (1,5,2,6)(9,13)(10,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 15 4: $C_2^2$ x 35 8: $D_{4}$ x 28, $C_2^3$ x 15 16: $D_4\times C_2$ x 42, $C_2^4$ 32: $C_2^2 \wr C_2$ x 28, $C_2^2 \times D_4$ x 7 64: $(((C_4 \times C_2): C_2):C_2):C_2$ x 6, 16T105 x 7 128: $C_2 \wr C_2\wr C_2$ x 12, 16T241 x 3, 16T245 x 3, 16T325 256: 16T509 x 6, 32T4223 x 3 512: 16T819 x 3, 16T907, 16T919 x 3 1024: 32T40151 x 3 2048: 16T1340 4096: 32T317640 8192: 16T1719 16384: 32T815463 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $C_2 \wr C_2\wr C_2$
Low degree siblings
16T1823 x 63, 32T1123296 x 32, 32T1123297 x 32, 32T1123298 x 32, 32T1123299 x 32, 32T1123300 x 32, 32T1123301 x 32, 32T1123302 x 32, 32T1123303 x 32, 32T1123304 x 32, 32T1123305 x 32, 32T1123306 x 32, 32T1123307 x 32, 32T1123308 x 32, 32T1123309 x 32, 32T1123310 x 32, 32T1123311 x 32, 32T1123312 x 32, 32T1123313 x 32, 32T1123314 x 32, 32T1123315 x 32, 32T1123316 x 32, 32T1123317 x 32, 32T1123318 x 32, 32T1123319 x 32, 32T1123320 x 32, 32T1123321 x 32, 32T1123322 x 32, 32T1123323 x 32, 32T1123324 x 32, 32T1123325 x 32, 32T1123326 x 32, 32T1123327 x 32, 32T1123328 x 32, 32T1123329 x 32, 32T1123330 x 32, 32T1123331 x 32, 32T1123332 x 32, 32T1123333 x 32, 32T1123334 x 32, 32T1123335 x 32, 32T1123336 x 32, 32T1123337 x 32, 32T1123338 x 32, 32T1123339 x 32, 32T1123340 x 32, 32T1123341 x 32, 32T1123342 x 32, 32T1123343 x 32, 32T1123344 x 32, 32T1123345 x 32, 32T1123346 x 32, 32T1123347 x 32, 32T1123348 x 32, 32T1123349 x 32, 32T1123350 x 32, 32T1123351 x 32, 32T1123352 x 32, 32T1123353 x 32, 32T1123354 x 32, 32T1123355 x 32, 32T1123356 x 32, 32T1123357 x 32, 32T1123358 x 32, 32T1124904 x 32, 32T1130094 x 16, 32T1130117 x 16, 32T1130614 x 16, 32T1237410 x 16, 32T1237501 x 16, 32T1415705 x 16, 32T1415720 x 16, 32T1468669 x 16, 32T1468670 x 16Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 230 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $32768=2^{15}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |