Normalized defining polynomial
\( x^{16} - x^{15} - 2 x^{14} - 4 x^{13} + 6 x^{12} + 9 x^{11} - 4 x^{10} - 24 x^{9} - 19 x^{8} + 23 x^{7} + \cdots - 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[4, 6]$ |
| |
| Discriminant: |
\(124470628948573741\)
\(\medspace = 41^{2}\cdot 83^{2}\cdot 1289^{2}\cdot 6469\)
|
| |
| Root discriminant: | \(11.71\) |
| |
| Galois root discriminant: | $41^{1/2}83^{1/2}1289^{1/2}6469^{1/2}\approx 168451.9368336262$ | ||
| Ramified primes: |
\(41\), \(83\), \(1289\), \(6469\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{6469}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17807}a^{15}-\frac{8024}{17807}a^{14}+\frac{4245}{17807}a^{13}+\frac{7152}{17807}a^{12}-\frac{6336}{17807}a^{11}-\frac{5248}{17807}a^{10}-\frac{8855}{17807}a^{9}-\frac{6289}{17807}a^{8}-\frac{8410}{17807}a^{7}+\frac{2730}{17807}a^{6}-\frac{143}{17807}a^{5}+\frac{7651}{17807}a^{4}-\frac{3268}{17807}a^{3}+\frac{7241}{17807}a^{2}-\frac{8103}{17807}a-\frac{2983}{17807}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2925}{17807}a^{15}-\frac{574}{17807}a^{14}+\frac{5146}{17807}a^{13}-\frac{39239}{17807}a^{12}-\frac{13520}{17807}a^{11}+\frac{34848}{17807}a^{10}+\frac{97345}{17807}a^{9}-\frac{54115}{17807}a^{8}-\frac{274888}{17807}a^{7}-\frac{116935}{17807}a^{6}+\frac{222777}{17807}a^{5}+\frac{351916}{17807}a^{4}-\frac{14348}{17807}a^{3}-\frac{206282}{17807}a^{2}-\frac{35772}{17807}a+\frac{35769}{17807}$, $\frac{1526}{17807}a^{15}-\frac{11215}{17807}a^{14}+\frac{13929}{17807}a^{13}+\frac{16068}{17807}a^{12}+\frac{465}{17807}a^{11}-\frac{66526}{17807}a^{10}-\frac{15024}{17807}a^{9}+\frac{125608}{17807}a^{8}+\frac{94222}{17807}a^{7}-\frac{125507}{17807}a^{6}-\frac{182604}{17807}a^{5}+\frac{47455}{17807}a^{4}+\frac{194869}{17807}a^{3}+\frac{9426}{17807}a^{2}-\frac{78348}{17807}a-\frac{11273}{17807}$, $\frac{8170}{17807}a^{15}-\frac{26320}{17807}a^{14}+\frac{11421}{17807}a^{13}+\frac{7073}{17807}a^{12}+\frac{71057}{17807}a^{11}-\frac{85939}{17807}a^{10}-\frac{102351}{17807}a^{9}+\frac{27679}{17807}a^{8}+\frac{203390}{17807}a^{7}+\frac{80964}{17807}a^{6}-\frac{242346}{17807}a^{5}-\frac{154163}{17807}a^{4}+\frac{64361}{17807}a^{3}+\frac{146572}{17807}a^{2}+\frac{22723}{17807}a-\frac{28941}{17807}$, $\frac{4808}{17807}a^{15}-\frac{9430}{17807}a^{14}-\frac{14669}{17807}a^{13}+\frac{1499}{17807}a^{12}+\frac{75517}{17807}a^{11}+\frac{17942}{17807}a^{10}-\frac{122952}{17807}a^{9}-\frac{143682}{17807}a^{8}+\frac{146873}{17807}a^{7}+\frac{358221}{17807}a^{6}+\frac{24736}{17807}a^{5}-\frac{305973}{17807}a^{4}-\frac{238261}{17807}a^{3}+\frac{126692}{17807}a^{2}+\frac{144948}{17807}a-\frac{43243}{17807}$, $\frac{7459}{17807}a^{15}-\frac{19496}{17807}a^{14}+\frac{20416}{17807}a^{13}-\frac{38618}{17807}a^{12}+\frac{52975}{17807}a^{11}-\frac{58467}{17807}a^{10}+\frac{32332}{17807}a^{9}-\frac{41627}{17807}a^{8}-\frac{49550}{17807}a^{7}-\frac{25945}{17807}a^{6}-\frac{51638}{17807}a^{5}+\frac{122023}{17807}a^{4}+\frac{19578}{17807}a^{3}+\frac{37602}{17807}a^{2}+\frac{14488}{17807}a-\frac{44868}{17807}$, $\frac{12961}{17807}a^{15}-\frac{23991}{17807}a^{14}-\frac{4185}{17807}a^{13}-\frac{23977}{17807}a^{12}+\frac{58409}{17807}a^{11}+\frac{3412}{17807}a^{10}-\frac{56961}{17807}a^{9}-\frac{80318}{17807}a^{8}-\frac{94398}{17807}a^{7}+\frac{18828}{17807}a^{6}+\frac{87540}{17807}a^{5}+\frac{193305}{17807}a^{4}+\frac{77533}{17807}a^{3}-\frac{152552}{17807}a^{2}-\frac{68525}{17807}a+\frac{31948}{17807}$, $\frac{4850}{17807}a^{15}-\frac{8105}{17807}a^{14}-\frac{14449}{17807}a^{13}+\frac{16971}{17807}a^{12}+\frac{23089}{17807}a^{11}+\frac{11210}{17807}a^{10}-\frac{103108}{17807}a^{9}-\frac{16066}{17807}a^{8}+\frac{78565}{17807}a^{7}+\frac{63320}{17807}a^{6}-\frac{34691}{17807}a^{5}-\frac{109280}{17807}a^{4}+\frac{51851}{17807}a^{3}-\frac{14361}{17807}a^{2}-\frac{17308}{17807}a+\frac{45155}{17807}$, $\frac{1750}{17807}a^{15}-\frac{10084}{17807}a^{14}+\frac{3231}{17807}a^{13}+\frac{15486}{17807}a^{12}+\frac{41375}{17807}a^{11}-\frac{49009}{17807}a^{10}-\frac{75388}{17807}a^{9}+\frac{16783}{17807}a^{8}+\frac{204766}{17807}a^{7}+\frac{112066}{17807}a^{6}-\frac{161215}{17807}a^{5}-\frac{215298}{17807}a^{4}+\frac{14854}{17807}a^{3}+\frac{153429}{17807}a^{2}+\frac{29736}{17807}a-\frac{20606}{17807}$, $\frac{16216}{17807}a^{15}-\frac{19242}{17807}a^{14}-\frac{40556}{17807}a^{13}-\frac{17966}{17807}a^{12}+\frac{90849}{17807}a^{11}+\frac{87120}{17807}a^{10}-\frac{157295}{17807}a^{9}-\frac{251033}{17807}a^{8}-\frac{46168}{17807}a^{7}+\frac{232969}{17807}a^{6}+\frac{245320}{17807}a^{5}+\frac{25054}{17807}a^{4}-\frac{256}{17807}a^{3}-\frac{106144}{17807}a^{2}-\frac{89430}{17807}a+\frac{27098}{17807}$
|
| |
| Regulator: | \( 112.097283421 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 112.097283421 \cdot 1}{2\cdot\sqrt{124470628948573741}}\cr\approx \mathstrut & 0.156397873255 \end{aligned}\]
Galois group
$C_2^8.S_8$ (as 16T1948):
| A non-solvable group of order 10321920 |
| The 185 conjugacy class representatives for $C_2^8.S_8$ |
| Character table for $C_2^8.S_8$ |
Intermediate fields
| 8.2.4386467.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/padicField/3.5.0.1}{5} }^{2}{,}\,{\href{/padicField/3.3.0.1}{3} }^{2}$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | $16$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}$ | ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | R | ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(41\)
| 41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 41.2.2.2a1.2 | $x^{4} + 76 x^{3} + 1456 x^{2} + 456 x + 77$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 41.6.1.0a1.1 | $x^{6} + 4 x^{4} + 33 x^{3} + 39 x^{2} + 6 x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
|
\(83\)
| 83.2.2.2a1.2 | $x^{4} + 164 x^{3} + 6728 x^{2} + 328 x + 87$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 83.6.1.0a1.1 | $x^{6} + x^{4} + 76 x^{3} + 32 x^{2} + 17 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
| 83.6.1.0a1.1 | $x^{6} + x^{4} + 76 x^{3} + 32 x^{2} + 17 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
|
\(1289\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
|
\(6469\)
| $\Q_{6469}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{6469}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |