Label 16T1948
Degree $16$
Order $10321920$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no

Related objects

Learn more about

Group action invariants

Degree $n$:  $16$
Transitive number $t$:  $1948$
Parity:  $-1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $2$
Generators:  (1,8,11,3,6,14,15,10)(2,7,12,4,5,13,16,9), (1,13,12,16)(2,14,11,15)(7,9)(8,10), (1,2)(3,16,9,14,8,12)(4,15,10,13,7,11)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_2^2$
$40320$:  $S_8$
$80640$:  16T1873
$5160960$:  56T?

Resolvents shown for degrees $\leq 47$


Degree 2: None

Degree 4: None

Degree 8: $S_8$

Low degree siblings

16T1948 x 3, 32T2746190 x 2, 32T2746191 x 2, 32T2746192 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 185 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $10321920=2^{15} \cdot 3^{2} \cdot 5 \cdot 7$
Cyclic:  no
Abelian:  no
Solvable:  no
GAP id:  not available
Character table: not available.