Show commands:
Magma
magma: G := TransitiveGroup(16, 1948);
Group action invariants
Degree $n$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $1948$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2^8.S_8$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,8,11,3,6,14,15,10)(2,7,12,4,5,13,16,9), (1,13,12,16)(2,14,11,15)(7,9)(8,10), (1,2)(3,16,9,14,8,12)(4,15,10,13,7,11) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $40320$: $S_8$ $80640$: 16T1873 $5160960$: 56T? Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 8: $S_8$
Low degree siblings
16T1948 x 3, 32T2746190 x 2, 32T2746191 x 2, 32T2746192 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
magma: ConjugacyClasses(G);
Group invariants
Order: | $10321920=2^{15} \cdot 3^{2} \cdot 5 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 10321920.a | magma: IdentifyGroup(G);
| |
Character table: | not computed |
magma: CharacterTable(G);