Normalized defining polynomial
\( x^{16} - 34x^{12} + 102x^{10} - 51x^{8} - 136x^{6} + 153x^{4} - 17x^{2} - 17 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[10, 3]$ |
| |
| Discriminant: |
\(-732780301186512843008\)
\(\medspace = -\,2^{8}\cdot 17^{15}\)
|
| |
| Root discriminant: | \(20.14\) |
| |
| Galois root discriminant: | $2^{15/8}17^{15/16}\approx 52.236865100328075$ | ||
| Ramified primes: |
\(2\), \(17\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-17}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}$, $\frac{1}{270478}a^{14}+\frac{48429}{270478}a^{12}-\frac{40985}{135239}a^{10}-\frac{1}{2}a^{9}+\frac{40289}{135239}a^{8}-\frac{1}{2}a^{7}+\frac{125805}{270478}a^{6}-\frac{20990}{135239}a^{4}-\frac{690}{135239}a^{2}-\frac{1}{2}a+\frac{55634}{135239}$, $\frac{1}{270478}a^{15}+\frac{48429}{270478}a^{13}-\frac{40985}{135239}a^{11}-\frac{1}{2}a^{10}+\frac{40289}{135239}a^{9}-\frac{1}{2}a^{8}+\frac{125805}{270478}a^{7}-\frac{20990}{135239}a^{5}-\frac{690}{135239}a^{3}-\frac{1}{2}a^{2}+\frac{55634}{135239}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $12$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{29557}{135239}a^{14}+\frac{46377}{135239}a^{12}-\frac{927278}{135239}a^{10}+\frac{1572785}{135239}a^{8}+\frac{833514}{135239}a^{6}-\frac{2554576}{135239}a^{4}+\frac{459235}{135239}a^{2}+\frac{276752}{135239}$, $\frac{1407}{135239}a^{14}-\frac{20853}{135239}a^{12}-\frac{108162}{135239}a^{10}+\frac{719159}{135239}a^{8}-\frac{425933}{135239}a^{6}-\frac{1318807}{135239}a^{4}+\frac{763120}{135239}a^{2}+\frac{353031}{135239}$, $\frac{11383}{135239}a^{14}+\frac{33143}{135239}a^{12}-\frac{321127}{135239}a^{10}+\frac{163715}{135239}a^{8}+\frac{803978}{135239}a^{6}-\frac{464670}{135239}a^{4}-\frac{426533}{135239}a^{2}+\frac{320887}{135239}$, $\frac{14463}{135239}a^{14}+\frac{25846}{135239}a^{12}-\frac{432753}{135239}a^{10}+\frac{721346}{135239}a^{8}+\frac{147448}{135239}a^{6}-\frac{1015542}{135239}a^{4}+\frac{732627}{135239}a^{2}+\frac{60223}{135239}$, $\frac{36407}{135239}a^{14}+\frac{43760}{135239}a^{12}-\frac{1179928}{135239}a^{10}+\frac{2297921}{135239}a^{8}+\frac{719617}{135239}a^{6}-\frac{3681374}{135239}a^{4}+\frac{1149160}{135239}a^{2}+\frac{526026}{135239}$, $\frac{3080}{135239}a^{14}-\frac{7297}{135239}a^{12}-\frac{111626}{135239}a^{10}+\frac{557631}{135239}a^{8}-\frac{656530}{135239}a^{6}-\frac{550872}{135239}a^{4}+\frac{1159160}{135239}a^{2}-\frac{260664}{135239}$, $\frac{49960}{135239}a^{14}+\frac{87130}{135239}a^{12}-\frac{1536670}{135239}a^{10}+\frac{2451869}{135239}a^{8}+\frac{1472904}{135239}a^{6}-\frac{4226797}{135239}a^{4}+\frac{973763}{135239}a^{2}+\frac{626380}{135239}$, $\frac{32371}{270478}a^{15}-\frac{8701}{270478}a^{14}+\frac{4671}{270478}a^{13}+\frac{23995}{270478}a^{12}-\frac{571801}{135239}a^{11}+\frac{376201}{270478}a^{10}+\frac{3011103}{270478}a^{9}-\frac{1517831}{270478}a^{8}-\frac{9176}{135239}a^{7}+\frac{536117}{270478}a^{6}-\frac{2596095}{135239}a^{5}+\frac{1278491}{135239}a^{4}+\frac{1060357}{135239}a^{3}-\frac{1381281}{270478}a^{2}+\frac{1118053}{270478}a-\frac{186292}{135239}$, $\frac{2729}{10403}a^{15}+\frac{37357}{270478}a^{14}+\frac{3029}{10403}a^{13}+\frac{35025}{135239}a^{12}-\frac{177693}{20806}a^{11}-\frac{576882}{135239}a^{10}+\frac{361601}{20806}a^{9}+\frac{812776}{135239}a^{8}+\frac{43651}{10403}a^{7}+\frac{814882}{135239}a^{6}-\frac{296868}{10403}a^{5}-\frac{2855435}{270478}a^{4}+\frac{218195}{20806}a^{3}-\frac{297079}{270478}a^{2}+\frac{28414}{10403}a+\frac{608967}{270478}$, $\frac{37627}{270478}a^{15}-\frac{35497}{270478}a^{14}+\frac{27697}{270478}a^{13}-\frac{30642}{135239}a^{12}-\frac{1241707}{270478}a^{11}+\frac{1103917}{270478}a^{10}+\frac{2960523}{270478}a^{9}-\frac{1730523}{270478}a^{8}-\frac{241221}{270478}a^{7}-\frac{662728}{135239}a^{6}-\frac{2294033}{135239}a^{5}+\frac{3211255}{270478}a^{4}+\frac{2846535}{270478}a^{3}-\frac{120568}{135239}a^{2}+\frac{246515}{135239}a-\frac{836635}{270478}$, $\frac{32371}{270478}a^{15}-\frac{71267}{270478}a^{14}+\frac{4671}{270478}a^{13}-\frac{90263}{270478}a^{12}-\frac{571801}{135239}a^{11}+\frac{2271209}{270478}a^{10}+\frac{3011103}{270478}a^{9}-\frac{4496795}{270478}a^{8}-\frac{9176}{135239}a^{7}-\frac{1022103}{270478}a^{6}-\frac{2596095}{135239}a^{5}+\frac{3802443}{135239}a^{4}+\frac{1060357}{135239}a^{3}-\frac{2945551}{270478}a^{2}+\frac{1118053}{270478}a-\frac{607471}{135239}$, $\frac{37357}{270478}a^{15}+\frac{8413}{135239}a^{14}+\frac{35025}{135239}a^{13}+\frac{51379}{270478}a^{12}-\frac{576882}{135239}a^{11}-\frac{465615}{270478}a^{10}+\frac{812776}{135239}a^{9}+\frac{84846}{135239}a^{8}+\frac{814882}{135239}a^{7}+\frac{558007}{135239}a^{6}-\frac{2855435}{270478}a^{5}-\frac{272661}{270478}a^{4}-\frac{297079}{270478}a^{3}-\frac{249864}{135239}a^{2}+\frac{608967}{270478}a-\frac{26674}{135239}$
|
| |
| Regulator: | \( 38695.4736663 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{3}\cdot 38695.4736663 \cdot 1}{2\cdot\sqrt{732780301186512843008}}\cr\approx \mathstrut & 0.181544392984 \end{aligned}\] (assuming GRH)
Galois group
$C_2\wr C_8$ (as 16T1351):
| A solvable group of order 2048 |
| The 56 conjugacy class representatives for $C_2\wr C_8$ |
| Character table for $C_2\wr C_8$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.6.732780301186512843008.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | $16$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 2.4.2.8a4.2 | $x^{8} + 2 x^{7} + 2 x^{5} + 4 x^{4} + 2 x^{3} + x^{2} + 2 x + 7$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $$[2, 2, 2, 2]^{4}$$ | |
|
\(17\)
| 17.1.16.15a1.16 | $x^{16} + 272$ | $16$ | $1$ | $15$ | $C_{16}$ | $$[\ ]_{16}$$ |