Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1351$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $8$ | |
| Generators: | (1,12,5,16,10,3,14,8)(2,11,6,15,9,4,13,7), (3,4)(5,6)(9,10)(11,12)(13,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$ 16: $C_8:C_2$, $C_2^2:C_4$, $C_8\times C_2$ 32: $(C_8:C_2):C_2$, $C_2^3 : C_4 $, $C_2^2 : C_8$ 64: $((C_8 : C_2):C_2):C_2$ x 2, 16T84 128: 16T228 256: 16T565 512: 16T817 1024: 16T1194 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_8$
Low degree siblings
16T1351 x 15, 16T1422 x 16, 32T97990 x 16, 32T97991 x 32, 32T97992 x 32, 32T97993 x 64, 32T97994 x 64, 32T97995 x 64, 32T97996 x 32, 32T97997 x 64, 32T97998 x 64, 32T97999 x 64, 32T98000 x 32, 32T98001 x 16, 32T98002 x 32, 32T98003 x 64, 32T98004 x 16, 32T98005 x 32, 32T98006 x 64, 32T98007 x 32, 32T98008 x 8, 32T98009 x 16, 32T98010 x 16, 32T98011 x 32, 32T98012 x 8, 32T98013 x 32, 32T98014 x 16, 32T98015 x 32, 32T98016 x 8, 32T98017 x 8, 32T98018 x 16, 32T98019 x 8, 32T98020 x 16, 32T98021 x 8, 32T98022 x 16, 32T98824 x 8, 32T98825 x 8, 32T98826 x 16, 32T98827 x 16, 32T98828 x 16, 32T98829 x 8, 32T98830 x 8, 32T98831 x 8, 32T98832 x 16, 32T98833 x 8, 32T116544 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 56 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $2048=2^{11}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |