Properties

Label 16T1351
Order \(2048\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1351$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $8$
Generators:  (1,12,5,16,10,3,14,8)(2,11,6,15,9,4,13,7), (3,4)(5,6)(9,10)(11,12)(13,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$
16:  $C_8:C_2$, $C_2^2:C_4$, $C_8\times C_2$
32:  $(C_8:C_2):C_2$, $C_2^3 : C_4 $, $C_2^2 : C_8$
64:  $((C_8 : C_2):C_2):C_2$ x 2, 16T84
128:  16T228
256:  16T565
512:  16T817
1024:  16T1194

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $C_4$

Degree 8: $C_8$

Low degree siblings

16T1351 x 15, 16T1422 x 16, 32T97990 x 16, 32T97991 x 32, 32T97992 x 32, 32T97993 x 64, 32T97994 x 64, 32T97995 x 64, 32T97996 x 32, 32T97997 x 64, 32T97998 x 64, 32T97999 x 64, 32T98000 x 32, 32T98001 x 16, 32T98002 x 32, 32T98003 x 64, 32T98004 x 16, 32T98005 x 32, 32T98006 x 64, 32T98007 x 32, 32T98008 x 8, 32T98009 x 16, 32T98010 x 16, 32T98011 x 32, 32T98012 x 8, 32T98013 x 32, 32T98014 x 16, 32T98015 x 32, 32T98016 x 8, 32T98017 x 8, 32T98018 x 16, 32T98019 x 8, 32T98020 x 16, 32T98021 x 8, 32T98022 x 16, 32T98824 x 8, 32T98825 x 8, 32T98826 x 16, 32T98827 x 16, 32T98828 x 16, 32T98829 x 8, 32T98830 x 8, 32T98831 x 8, 32T98832 x 16, 32T98833 x 8, 32T116544 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 56 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2048=2^{11}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.