Normalized defining polynomial
\( x^{16} - x^{15} - 13 x^{14} + 65 x^{12} + 56 x^{11} - 119 x^{10} - 220 x^{9} - 21 x^{8} + 220 x^{7} + \cdots + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[10, 3]$ |
| |
| Discriminant: |
\(-298892216010498046875\)
\(\medspace = -\,3^{8}\cdot 5^{12}\cdot 179\cdot 1021^{2}\)
|
| |
| Root discriminant: | \(19.04\) |
| |
| Galois root discriminant: | $3^{1/2}5^{3/4}179^{1/2}1021^{1/2}\approx 2475.868173489506$ | ||
| Ramified primes: |
\(3\), \(5\), \(179\), \(1021\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-179}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{394631354879}a^{15}-\frac{19319158819}{394631354879}a^{14}+\frac{911192251}{394631354879}a^{13}-\frac{160848351330}{394631354879}a^{12}-\frac{52352011165}{394631354879}a^{11}-\frac{81669662009}{394631354879}a^{10}+\frac{171058210141}{394631354879}a^{9}-\frac{99374824570}{394631354879}a^{8}-\frac{4749546609}{394631354879}a^{7}-\frac{140452998914}{394631354879}a^{6}-\frac{167664002266}{394631354879}a^{5}-\frac{186886469353}{394631354879}a^{4}+\frac{190703171777}{394631354879}a^{3}-\frac{134970060906}{394631354879}a^{2}-\frac{157636789665}{394631354879}a+\frac{191269963426}{394631354879}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $12$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{5437526}{188009221}a^{15}+\frac{760857}{188009221}a^{14}-\frac{74409925}{188009221}a^{13}-\frac{82475854}{188009221}a^{12}+\frac{318524804}{188009221}a^{11}+\frac{710426021}{188009221}a^{10}-\frac{126806993}{188009221}a^{9}-\frac{1842367869}{188009221}a^{8}-\frac{1817148094}{188009221}a^{7}+\frac{711756923}{188009221}a^{6}+\frac{2504917100}{188009221}a^{5}+\frac{1722043246}{188009221}a^{4}+\frac{469721899}{188009221}a^{3}+\frac{63803831}{188009221}a^{2}+\frac{5032740}{188009221}a-\frac{117684647}{188009221}$, $\frac{2792126678}{394631354879}a^{15}+\frac{13609057172}{394631354879}a^{14}-\frac{79588293203}{394631354879}a^{13}-\frac{161743571316}{394631354879}a^{12}+\frac{504036088838}{394631354879}a^{11}+\frac{884328432145}{394631354879}a^{10}-\frac{1056131799710}{394631354879}a^{9}-\frac{2350953537558}{394631354879}a^{8}+\frac{294405111933}{394631354879}a^{7}+\frac{2684924680080}{394631354879}a^{6}+\frac{450012514967}{394631354879}a^{5}-\frac{1542207152319}{394631354879}a^{4}+\frac{1145986616984}{394631354879}a^{3}+\frac{1317552468740}{394631354879}a^{2}-\frac{678575896472}{394631354879}a+\frac{229746459537}{394631354879}$, $\frac{18858516240}{394631354879}a^{15}+\frac{15697117053}{394631354879}a^{14}-\frac{325974413437}{394631354879}a^{13}-\frac{342644630870}{394631354879}a^{12}+\frac{1696814585567}{394631354879}a^{11}+\frac{2688614010137}{394631354879}a^{10}-\frac{2616141098314}{394631354879}a^{9}-\frac{7959007169409}{394631354879}a^{8}-\frac{2562479130839}{394631354879}a^{7}+\frac{7304680879011}{394631354879}a^{6}+\frac{6982735280977}{394631354879}a^{5}+\frac{836083634079}{394631354879}a^{4}+\frac{1003877319184}{394631354879}a^{3}+\frac{496423448226}{394631354879}a^{2}-\frac{1630702493711}{394631354879}a-\frac{182351736196}{394631354879}$, $\frac{21252554341}{394631354879}a^{15}+\frac{13555497035}{394631354879}a^{14}-\frac{356515818642}{394631354879}a^{13}-\frac{355441464091}{394631354879}a^{12}+\frac{1861704330139}{394631354879}a^{11}+\frac{2896817405657}{394631354879}a^{10}-\frac{2905568124092}{394631354879}a^{9}-\frac{8592071560830}{394631354879}a^{8}-\frac{2795450038516}{394631354879}a^{7}+\frac{7495023698492}{394631354879}a^{6}+\frac{7337423255792}{394631354879}a^{5}+\frac{1624313391109}{394631354879}a^{4}+\frac{2120455023626}{394631354879}a^{3}+\frac{1277324708534}{394631354879}a^{2}-\frac{1367729111372}{394631354879}a-\frac{418079885150}{394631354879}$, $\frac{18858516240}{394631354879}a^{15}+\frac{15697117053}{394631354879}a^{14}-\frac{325974413437}{394631354879}a^{13}-\frac{342644630870}{394631354879}a^{12}+\frac{1696814585567}{394631354879}a^{11}+\frac{2688614010137}{394631354879}a^{10}-\frac{2616141098314}{394631354879}a^{9}-\frac{7959007169409}{394631354879}a^{8}-\frac{2562479130839}{394631354879}a^{7}+\frac{7304680879011}{394631354879}a^{6}+\frac{6982735280977}{394631354879}a^{5}+\frac{836083634079}{394631354879}a^{4}+\frac{1003877319184}{394631354879}a^{3}+\frac{496423448226}{394631354879}a^{2}-\frac{1236071138832}{394631354879}a-\frac{182351736196}{394631354879}$, $\frac{153923887948}{394631354879}a^{15}-\frac{231813070193}{394631354879}a^{14}-\frac{1869328102334}{394631354879}a^{13}+\frac{920628086260}{394631354879}a^{12}+\frac{9366934746117}{394631354879}a^{11}+\frac{4005044005440}{394631354879}a^{10}-\frac{19432007545283}{394631354879}a^{9}-\frac{23810675315013}{394631354879}a^{8}+\frac{6622663377854}{394631354879}a^{7}+\frac{28352957105162}{394631354879}a^{6}+\frac{14800580725395}{394631354879}a^{5}+\frac{3276019605989}{394631354879}a^{4}+\frac{3741457566446}{394631354879}a^{3}-\frac{3333271034552}{394631354879}a^{2}-\frac{3403640094424}{394631354879}a+\frac{86238500734}{394631354879}$, $\frac{80981816464}{394631354879}a^{15}-\frac{149724749069}{394631354879}a^{14}-\frac{953280522249}{394631354879}a^{13}+\frac{836909790083}{394631354879}a^{12}+\frac{4887271758447}{394631354879}a^{11}+\frac{410670828140}{394631354879}a^{10}-\frac{11509511481944}{394631354879}a^{9}-\frac{9553804566839}{394631354879}a^{8}+\frac{8660287531806}{394631354879}a^{7}+\frac{15384112824332}{394631354879}a^{6}+\frac{2936859418162}{394631354879}a^{5}-\frac{2040489592775}{394631354879}a^{4}+\frac{715469281699}{394631354879}a^{3}-\frac{2844786981084}{394631354879}a^{2}-\frac{1739502530159}{394631354879}a+\frac{56067320976}{394631354879}$, $\frac{11065574473}{394631354879}a^{15}-\frac{39111046368}{394631354879}a^{14}-\frac{132056670629}{394631354879}a^{13}+\frac{410669342180}{394631354879}a^{12}+\frac{859070314837}{394631354879}a^{11}-\frac{1491880283486}{394631354879}a^{10}-\frac{3512062283889}{394631354879}a^{9}+\frac{1312533512443}{394631354879}a^{8}+\frac{7402425246898}{394631354879}a^{7}+\frac{3581565806373}{394631354879}a^{6}-\frac{5190145658508}{394631354879}a^{5}-\frac{5453642004696}{394631354879}a^{4}-\frac{1554294429722}{394631354879}a^{3}-\frac{1990882413661}{394631354879}a^{2}-\frac{96169935659}{394631354879}a+\frac{1471611148045}{394631354879}$, $\frac{145071726581}{394631354879}a^{15}-\frac{249698861890}{394631354879}a^{14}-\frac{1699990624673}{394631354879}a^{13}+\frac{1221240343804}{394631354879}a^{12}+\frac{8487387719158}{394631354879}a^{11}+\frac{1970244790955}{394631354879}a^{10}-\frac{18477865116888}{394631354879}a^{9}-\frac{18173786769569}{394631354879}a^{8}+\frac{10134864723020}{394631354879}a^{7}+\frac{23817220135672}{394631354879}a^{6}+\frac{7589574428099}{394631354879}a^{5}+\frac{909773606402}{394631354879}a^{4}+\frac{4283402744264}{394631354879}a^{3}-\frac{2347017961111}{394631354879}a^{2}-\frac{2269996774106}{394631354879}a+\frac{302127259120}{394631354879}$, $\frac{123819172240}{394631354879}a^{15}-\frac{263254358925}{394631354879}a^{14}-\frac{1343474806031}{394631354879}a^{13}+\frac{1576681807895}{394631354879}a^{12}+\frac{6625683389019}{394631354879}a^{11}-\frac{926572614702}{394631354879}a^{10}-\frac{15572296992796}{394631354879}a^{9}-\frac{9581715208739}{394631354879}a^{8}+\frac{12930314761536}{394631354879}a^{7}+\frac{16322196437180}{394631354879}a^{6}+\frac{252151172307}{394631354879}a^{5}-\frac{714539784707}{394631354879}a^{4}+\frac{2162947720638}{394631354879}a^{3}-\frac{3624342669645}{394631354879}a^{2}-\frac{507636307855}{394631354879}a+\frac{720207144270}{394631354879}$, $\frac{129994087995}{394631354879}a^{15}-\frac{262382214091}{394631354879}a^{14}-\frac{1425399309826}{394631354879}a^{13}+\frac{1455940715031}{394631354879}a^{12}+\frac{7006471837865}{394631354879}a^{11}+\frac{108307345283}{394631354879}a^{10}-\frac{15785807212208}{394631354879}a^{9}-\frac{12523465120914}{394631354879}a^{8}+\frac{10426653664440}{394631354879}a^{7}+\frac{18405016602137}{394631354879}a^{6}+\frac{4673582329487}{394631354879}a^{5}+\frac{1211445919458}{394631354879}a^{4}+\frac{1900146963362}{394631354879}a^{3}-\frac{3666695107779}{394631354879}a^{2}-\frac{1274016968369}{394631354879}a+\frac{365722236949}{394631354879}$, $\frac{108197574492}{394631354879}a^{15}-\frac{131171762674}{394631354879}a^{14}-\frac{1379900644031}{394631354879}a^{13}+\frac{292714963109}{394631354879}a^{12}+\frac{6979982318171}{394631354879}a^{11}+\frac{4611160040263}{394631354879}a^{10}-\frac{13862647636130}{394631354879}a^{9}-\frac{21086565726498}{394631354879}a^{8}+\frac{2034450221809}{394631354879}a^{7}+\frac{23709094654806}{394631354879}a^{6}+\frac{14839741968907}{394631354879}a^{5}+\frac{2352957111147}{394631354879}a^{4}+\frac{2588155623300}{394631354879}a^{3}-\frac{1639109129856}{394631354879}a^{2}-\frac{3367393311266}{394631354879}a-\frac{198996839330}{394631354879}$
|
| |
| Regulator: | \( 23241.037751 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{3}\cdot 23241.037751 \cdot 1}{2\cdot\sqrt{298892216010498046875}}\cr\approx \mathstrut & 0.17072918993 \end{aligned}\] (assuming GRH)
Galois group
$C_4^4.C_2\wr C_4$ (as 16T1771):
| A solvable group of order 16384 |
| The 190 conjugacy class representatives for $C_4^4.C_2\wr C_4$ |
| Character table for $C_4^4.C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 8.8.1292203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.4.52401279790283203125.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | R | R | $16$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{6}$ | $16$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | $16$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.8.2.8a1.2 | $x^{16} + 4 x^{13} + 2 x^{12} + 8 x^{10} + 8 x^{9} + 5 x^{8} + 8 x^{7} + 12 x^{6} + 12 x^{5} + 8 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 7$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $$[\ ]_{2}^{8}$$ |
|
\(5\)
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
|
\(179\)
| $\Q_{179}$ | $x + 177$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{179}$ | $x + 177$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 179.2.1.0a1.1 | $x^{2} + 172 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 179.2.1.0a1.1 | $x^{2} + 172 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 179.1.2.1a1.2 | $x^{2} + 358$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 179.2.1.0a1.1 | $x^{2} + 172 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 179.2.1.0a1.1 | $x^{2} + 172 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 179.4.1.0a1.1 | $x^{4} + x^{2} + 109 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(1021\)
| $\Q_{1021}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{1021}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ |