Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1771$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $8$ | |
| Generators: | (1,6,10,14,2,5,9,13)(3,15)(4,16)(7,11,8,12), (1,4,14,7,2,3,13,8)(5,16,10,12,6,15,9,11), (1,8,14,3,9,16,5,12,2,7,13,4,10,15,6,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$ 32: $C_2^2 \wr C_2$ x 4, $C_2^3 : C_4 $ x 12, $C_2 \times (C_2^2:C_4)$ x 3 64: $((C_8 : C_2):C_2):C_2$ x 24, 16T76 x 6, 16T79 128: 16T227 x 12, 16T240 x 3 256: 16T502 x 6, 16T581 512: 16T911 x 3 1024: 16T1224 2048: 32T185988 4096: 16T1565 8192: 32T409911 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $((C_8 : C_2):C_2):C_2$
Low degree siblings
16T1771 x 127, 32T723692 x 128, 32T723693 x 128, 32T723694 x 64, 32T723695 x 128, 32T723696 x 128, 32T723697 x 128, 32T723698 x 128, 32T723699 x 128, 32T723700 x 64, 32T723701 x 128, 32T723702 x 128, 32T723703 x 128, 32T723704 x 128, 32T723705 x 128, 32T723706 x 128, 32T723707 x 64, 32T723708 x 64, 32T723709 x 128, 32T723710 x 128, 32T723711 x 128, 32T723712 x 128, 32T723713 x 128, 32T723714 x 128, 32T723715 x 64, 32T723716 x 128, 32T723717 x 64, 32T723718 x 128, 32T723719 x 128, 32T723720 x 128, 32T723721 x 128, 32T723722 x 64, 32T723723 x 128, 32T723724 x 128, 32T723725 x 64, 32T723726 x 128, 32T723727 x 128, 32T723728 x 64, 32T723729 x 128, 32T723730 x 64, 32T723731 x 128, 32T723732 x 128, 32T723733 x 128, 32T723734 x 64, 32T723735 x 64, 32T723736 x 64, 32T723737 x 128, 32T723738 x 128, 32T723739 x 128, 32T723740 x 128, 32T723741 x 64, 32T723742 x 128, 32T723743 x 64, 32T723744 x 128, 32T723745 x 128, 32T723746 x 64, 32T723747 x 64, 32T723748 x 64, 32T723749 x 128, 32T723750 x 128, 32T723751 x 64, 32T723752 x 64, 32T723753 x 128, 32T723754 x 128, 32T723755 x 64, 32T723756 x 64, 32T723757 x 128, 32T723758 x 128, 32T723759 x 128, 32T723760 x 64, 32T723761 x 128, 32T723762 x 128, 32T723763 x 64, 32T723764 x 64, 32T723765 x 64, 32T723766 x 64, 32T723767 x 64, 32T723768 x 64, 32T723769 x 64, 32T723770 x 64, 32T727447 x 64Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 190 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $16384=2^{14}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |