Normalized defining polynomial
\( x^{16} - 6x^{14} + 5x^{12} + 28x^{10} - 53x^{8} + 10x^{6} + 17x^{4} - 2x^{2} - 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[10, 3]$ |
| |
| Discriminant: |
\(-165351052032100000000\)
\(\medspace = -\,2^{8}\cdot 5^{8}\cdot 11^{2}\cdot 29^{4}\cdot 139^{2}\)
|
| |
| Root discriminant: | \(18.35\) |
| |
| Galois root discriminant: | $2^{15/8}5^{1/2}11^{1/2}29^{1/2}139^{1/2}\approx 1727.1059712424124$ | ||
| Ramified primes: |
\(2\), \(5\), \(11\), \(29\), \(139\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}+\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}+\frac{1}{4}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}+\frac{1}{4}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{10}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}-\frac{1}{2}a-\frac{1}{4}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $12$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{15}-6a^{13}+5a^{11}+28a^{9}-53a^{7}+10a^{5}+17a^{3}-2a$, $\frac{1}{2}a^{14}-\frac{5}{2}a^{12}+\frac{1}{2}a^{10}+13a^{8}-16a^{6}-\frac{5}{2}a^{4}+\frac{11}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{12}-2a^{10}-\frac{1}{2}a^{8}+\frac{19}{2}a^{6}-\frac{21}{2}a^{4}+2a^{2}+\frac{3}{2}$, $\frac{1}{4}a^{14}-\frac{7}{4}a^{12}+\frac{9}{4}a^{10}-\frac{1}{4}a^{9}+\frac{29}{4}a^{8}+\frac{3}{4}a^{7}-\frac{71}{4}a^{6}+\frac{5}{4}a^{5}+\frac{15}{2}a^{4}-\frac{15}{4}a^{3}+\frac{3}{2}a^{2}+\frac{1}{4}a$, $\frac{1}{4}a^{14}-\frac{7}{4}a^{12}+\frac{9}{4}a^{10}+\frac{1}{4}a^{9}+\frac{29}{4}a^{8}-\frac{3}{4}a^{7}-\frac{71}{4}a^{6}-\frac{5}{4}a^{5}+\frac{15}{2}a^{4}+\frac{15}{4}a^{3}+\frac{3}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{4}a^{14}-\frac{7}{4}a^{12}+\frac{9}{4}a^{10}+\frac{1}{4}a^{9}+\frac{29}{4}a^{8}-\frac{3}{4}a^{7}-\frac{71}{4}a^{6}-\frac{5}{4}a^{5}+\frac{15}{2}a^{4}+\frac{15}{4}a^{3}+\frac{3}{2}a^{2}-\frac{1}{4}a-1$, $\frac{1}{4}a^{15}+\frac{1}{4}a^{14}-\frac{3}{2}a^{13}-\frac{5}{4}a^{12}+a^{11}+\frac{1}{2}a^{10}+\frac{31}{4}a^{9}+\frac{23}{4}a^{8}-\frac{49}{4}a^{7}-\frac{35}{4}a^{6}-\frac{3}{2}a^{5}+2a^{4}+\frac{23}{4}a^{3}+\frac{1}{2}a^{2}+\frac{3}{4}a+\frac{3}{4}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{14}-\frac{3}{2}a^{13}+\frac{5}{4}a^{12}+a^{11}-\frac{1}{2}a^{10}+\frac{31}{4}a^{9}-\frac{23}{4}a^{8}-\frac{49}{4}a^{7}+\frac{35}{4}a^{6}-\frac{3}{2}a^{5}-2a^{4}+\frac{23}{4}a^{3}-\frac{1}{2}a^{2}+\frac{3}{4}a-\frac{3}{4}$, $\frac{1}{4}a^{15}+\frac{1}{4}a^{14}-\frac{7}{4}a^{13}-\frac{7}{4}a^{12}+\frac{9}{4}a^{11}+\frac{5}{2}a^{10}+\frac{15}{2}a^{9}+\frac{13}{2}a^{8}-\frac{37}{2}a^{7}-19a^{6}+\frac{25}{4}a^{5}+\frac{45}{4}a^{4}+\frac{21}{4}a^{3}+\frac{9}{4}a^{2}-\frac{1}{4}a-1$, $\frac{1}{4}a^{14}-\frac{7}{4}a^{12}+\frac{9}{4}a^{10}-\frac{1}{4}a^{9}+\frac{29}{4}a^{8}+\frac{3}{4}a^{7}-\frac{71}{4}a^{6}+\frac{5}{4}a^{5}+\frac{15}{2}a^{4}-\frac{15}{4}a^{3}+\frac{3}{2}a^{2}+\frac{1}{4}a-1$, $\frac{1}{2}a^{15}-3a^{13}+\frac{5}{2}a^{11}+\frac{27}{2}a^{9}-\frac{51}{2}a^{7}+8a^{5}+\frac{7}{2}a^{3}-3a$, $\frac{1}{4}a^{15}-\frac{1}{2}a^{14}-\frac{5}{4}a^{13}+\frac{13}{4}a^{12}-\frac{1}{2}a^{11}-\frac{13}{4}a^{10}+\frac{35}{4}a^{9}-15a^{8}-\frac{19}{4}a^{7}+30a^{6}-13a^{5}-6a^{4}+\frac{11}{2}a^{3}-\frac{29}{4}a^{2}+\frac{11}{4}a+\frac{1}{4}$
|
| |
| Regulator: | \( 17923.1251114 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{3}\cdot 17923.1251114 \cdot 1}{2\cdot\sqrt{165351052032100000000}}\cr\approx \mathstrut & 0.177018974797 \end{aligned}\] (assuming GRH)
Galois group
$C_4^4.C_2\wr D_4$ (as 16T1823):
| A solvable group of order 32768 |
| The 230 conjugacy class representatives for $C_4^4.C_2\wr D_4$ |
| Character table for $C_4^4.C_2\wr D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.803680625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.4.27684675814400000000.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.8.1.0a1.1 | $x^{8} + x^{4} + x^{3} + x^{2} + 1$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ |
| 2.4.2.8a2.1 | $x^{8} + 4 x^{5} + 2 x^{4} + 3 x^{2} + 4 x + 3$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $$[2, 2, 2, 2]^{4}$$ | |
|
\(5\)
| 5.8.2.8a1.2 | $x^{16} + 2 x^{12} + 6 x^{10} + 8 x^{9} + 5 x^{8} + 6 x^{6} + 8 x^{5} + 13 x^{4} + 24 x^{3} + 28 x^{2} + 16 x + 9$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $$[\ ]_{2}^{8}$$ |
|
\(11\)
| 11.1.2.1a1.1 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.1.2.1a1.1 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 11.8.1.0a1.1 | $x^{8} + 7 x^{4} + 7 x^{3} + x^{2} + 7 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | |
|
\(29\)
| 29.4.1.0a1.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 29.4.1.0a1.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(139\)
| $\Q_{139}$ | $x + 137$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{139}$ | $x + 137$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{139}$ | $x + 137$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{139}$ | $x + 137$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 139.2.1.0a1.1 | $x^{2} + 138 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 139.1.2.1a1.2 | $x^{2} + 278$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 139.1.2.1a1.2 | $x^{2} + 278$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 139.2.1.0a1.1 | $x^{2} + 138 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 139.4.1.0a1.1 | $x^{4} + 7 x^{2} + 96 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |