Properties

Label 16.10.165...000.1
Degree $16$
Signature $[10, 3]$
Discriminant $-1.654\times 10^{20}$
Root discriminant \(18.35\)
Ramified primes $2,5,11,29,139$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_4^4.C_2\wr D_4$ (as 16T1823)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^14 + 5*x^12 + 28*x^10 - 53*x^8 + 10*x^6 + 17*x^4 - 2*x^2 - 1)
 
Copy content gp:K = bnfinit(y^16 - 6*y^14 + 5*y^12 + 28*y^10 - 53*y^8 + 10*y^6 + 17*y^4 - 2*y^2 - 1, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 6*x^14 + 5*x^12 + 28*x^10 - 53*x^8 + 10*x^6 + 17*x^4 - 2*x^2 - 1);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 6*x^14 + 5*x^12 + 28*x^10 - 53*x^8 + 10*x^6 + 17*x^4 - 2*x^2 - 1)
 

\( x^{16} - 6x^{14} + 5x^{12} + 28x^{10} - 53x^{8} + 10x^{6} + 17x^{4} - 2x^{2} - 1 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[10, 3]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-165351052032100000000\) \(\medspace = -\,2^{8}\cdot 5^{8}\cdot 11^{2}\cdot 29^{4}\cdot 139^{2}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(18.35\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{15/8}5^{1/2}11^{1/2}29^{1/2}139^{1/2}\approx 1727.1059712424124$
Ramified primes:   \(2\), \(5\), \(11\), \(29\), \(139\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}+\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}+\frac{1}{4}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}+\frac{1}{4}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{10}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}-\frac{1}{2}a-\frac{1}{4}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $12$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $a^{15}-6a^{13}+5a^{11}+28a^{9}-53a^{7}+10a^{5}+17a^{3}-2a$, $\frac{1}{2}a^{14}-\frac{5}{2}a^{12}+\frac{1}{2}a^{10}+13a^{8}-16a^{6}-\frac{5}{2}a^{4}+\frac{11}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{12}-2a^{10}-\frac{1}{2}a^{8}+\frac{19}{2}a^{6}-\frac{21}{2}a^{4}+2a^{2}+\frac{3}{2}$, $\frac{1}{4}a^{14}-\frac{7}{4}a^{12}+\frac{9}{4}a^{10}-\frac{1}{4}a^{9}+\frac{29}{4}a^{8}+\frac{3}{4}a^{7}-\frac{71}{4}a^{6}+\frac{5}{4}a^{5}+\frac{15}{2}a^{4}-\frac{15}{4}a^{3}+\frac{3}{2}a^{2}+\frac{1}{4}a$, $\frac{1}{4}a^{14}-\frac{7}{4}a^{12}+\frac{9}{4}a^{10}+\frac{1}{4}a^{9}+\frac{29}{4}a^{8}-\frac{3}{4}a^{7}-\frac{71}{4}a^{6}-\frac{5}{4}a^{5}+\frac{15}{2}a^{4}+\frac{15}{4}a^{3}+\frac{3}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{4}a^{14}-\frac{7}{4}a^{12}+\frac{9}{4}a^{10}+\frac{1}{4}a^{9}+\frac{29}{4}a^{8}-\frac{3}{4}a^{7}-\frac{71}{4}a^{6}-\frac{5}{4}a^{5}+\frac{15}{2}a^{4}+\frac{15}{4}a^{3}+\frac{3}{2}a^{2}-\frac{1}{4}a-1$, $\frac{1}{4}a^{15}+\frac{1}{4}a^{14}-\frac{3}{2}a^{13}-\frac{5}{4}a^{12}+a^{11}+\frac{1}{2}a^{10}+\frac{31}{4}a^{9}+\frac{23}{4}a^{8}-\frac{49}{4}a^{7}-\frac{35}{4}a^{6}-\frac{3}{2}a^{5}+2a^{4}+\frac{23}{4}a^{3}+\frac{1}{2}a^{2}+\frac{3}{4}a+\frac{3}{4}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{14}-\frac{3}{2}a^{13}+\frac{5}{4}a^{12}+a^{11}-\frac{1}{2}a^{10}+\frac{31}{4}a^{9}-\frac{23}{4}a^{8}-\frac{49}{4}a^{7}+\frac{35}{4}a^{6}-\frac{3}{2}a^{5}-2a^{4}+\frac{23}{4}a^{3}-\frac{1}{2}a^{2}+\frac{3}{4}a-\frac{3}{4}$, $\frac{1}{4}a^{15}+\frac{1}{4}a^{14}-\frac{7}{4}a^{13}-\frac{7}{4}a^{12}+\frac{9}{4}a^{11}+\frac{5}{2}a^{10}+\frac{15}{2}a^{9}+\frac{13}{2}a^{8}-\frac{37}{2}a^{7}-19a^{6}+\frac{25}{4}a^{5}+\frac{45}{4}a^{4}+\frac{21}{4}a^{3}+\frac{9}{4}a^{2}-\frac{1}{4}a-1$, $\frac{1}{4}a^{14}-\frac{7}{4}a^{12}+\frac{9}{4}a^{10}-\frac{1}{4}a^{9}+\frac{29}{4}a^{8}+\frac{3}{4}a^{7}-\frac{71}{4}a^{6}+\frac{5}{4}a^{5}+\frac{15}{2}a^{4}-\frac{15}{4}a^{3}+\frac{3}{2}a^{2}+\frac{1}{4}a-1$, $\frac{1}{2}a^{15}-3a^{13}+\frac{5}{2}a^{11}+\frac{27}{2}a^{9}-\frac{51}{2}a^{7}+8a^{5}+\frac{7}{2}a^{3}-3a$, $\frac{1}{4}a^{15}-\frac{1}{2}a^{14}-\frac{5}{4}a^{13}+\frac{13}{4}a^{12}-\frac{1}{2}a^{11}-\frac{13}{4}a^{10}+\frac{35}{4}a^{9}-15a^{8}-\frac{19}{4}a^{7}+30a^{6}-13a^{5}-6a^{4}+\frac{11}{2}a^{3}-\frac{29}{4}a^{2}+\frac{11}{4}a+\frac{1}{4}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 17923.1251114 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{3}\cdot 17923.1251114 \cdot 1}{2\cdot\sqrt{165351052032100000000}}\cr\approx \mathstrut & 0.177018974797 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^14 + 5*x^12 + 28*x^10 - 53*x^8 + 10*x^6 + 17*x^4 - 2*x^2 - 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 6*x^14 + 5*x^12 + 28*x^10 - 53*x^8 + 10*x^6 + 17*x^4 - 2*x^2 - 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 6*x^14 + 5*x^12 + 28*x^10 - 53*x^8 + 10*x^6 + 17*x^4 - 2*x^2 - 1); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 6*x^14 + 5*x^12 + 28*x^10 - 53*x^8 + 10*x^6 + 17*x^4 - 2*x^2 - 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_4^4.C_2\wr D_4$ (as 16T1823):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 32768
The 230 conjugacy class representatives for $C_4^4.C_2\wr D_4$
Character table for $C_4^4.C_2\wr D_4$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.803680625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: 16.4.27684675814400000000.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $16$ R ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ R ${\href{/padicField/13.4.0.1}{4} }^{4}$ ${\href{/padicField/17.8.0.1}{8} }^{2}$ ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ R ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{6}$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}$ ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}$ ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.4.0.1}{4} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.1.0a1.1$x^{8} + x^{4} + x^{3} + x^{2} + 1$$1$$8$$0$$C_8$$$[\ ]^{8}$$
2.4.2.8a2.1$x^{8} + 4 x^{5} + 2 x^{4} + 3 x^{2} + 4 x + 3$$2$$4$$8$$((C_8 : C_2):C_2):C_2$$$[2, 2, 2, 2]^{4}$$
\(5\) Copy content Toggle raw display 5.8.2.8a1.2$x^{16} + 2 x^{12} + 6 x^{10} + 8 x^{9} + 5 x^{8} + 6 x^{6} + 8 x^{5} + 13 x^{4} + 24 x^{3} + 28 x^{2} + 16 x + 9$$2$$8$$8$$C_8\times C_2$$$[\ ]_{2}^{8}$$
\(11\) Copy content Toggle raw display 11.1.2.1a1.1$x^{2} + 11$$2$$1$$1$$C_2$$$[\ ]_{2}$$
11.2.1.0a1.1$x^{2} + 7 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
11.2.1.0a1.1$x^{2} + 7 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
11.1.2.1a1.1$x^{2} + 11$$2$$1$$1$$C_2$$$[\ ]_{2}$$
11.8.1.0a1.1$x^{8} + 7 x^{4} + 7 x^{3} + x^{2} + 7 x + 2$$1$$8$$0$$C_8$$$[\ ]^{8}$$
\(29\) Copy content Toggle raw display 29.4.1.0a1.1$x^{4} + 2 x^{2} + 15 x + 2$$1$$4$$0$$C_4$$$[\ ]^{4}$$
29.2.2.2a1.2$x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
29.2.2.2a1.2$x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
29.4.1.0a1.1$x^{4} + 2 x^{2} + 15 x + 2$$1$$4$$0$$C_4$$$[\ ]^{4}$$
\(139\) Copy content Toggle raw display $\Q_{139}$$x + 137$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{139}$$x + 137$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{139}$$x + 137$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{139}$$x + 137$$1$$1$$0$Trivial$$[\ ]$$
139.2.1.0a1.1$x^{2} + 138 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
139.1.2.1a1.2$x^{2} + 278$$2$$1$$1$$C_2$$$[\ ]_{2}$$
139.1.2.1a1.2$x^{2} + 278$$2$$1$$1$$C_2$$$[\ ]_{2}$$
139.2.1.0a1.1$x^{2} + 138 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
139.4.1.0a1.1$x^{4} + 7 x^{2} + 96 x + 2$$1$$4$$0$$C_4$$$[\ ]^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)