Normalized defining polynomial
\( x^{16} - 8 x^{14} - 16 x^{13} + 16 x^{12} + 96 x^{11} + 344 x^{10} + 784 x^{9} + 1758 x^{8} + 2512 x^{7} + \cdots + 799 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(484116351470433472610304\)
\(\medspace = 2^{66}\cdot 3^{8}\)
|
| |
| Root discriminant: | \(30.22\) |
| |
| Galois root discriminant: | $2^{67/16}3^{1/2}\approx 31.559036391689393$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2\times C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 8.0.173946175488.1 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17}a^{12}-\frac{5}{17}a^{11}+\frac{7}{17}a^{10}-\frac{6}{17}a^{9}+\frac{5}{17}a^{8}+\frac{8}{17}a^{7}+\frac{6}{17}a^{6}-\frac{4}{17}a^{5}-\frac{2}{17}a^{4}-\frac{3}{17}a^{3}-\frac{7}{17}a$, $\frac{1}{17}a^{13}-\frac{1}{17}a^{11}-\frac{5}{17}a^{10}-\frac{8}{17}a^{9}-\frac{1}{17}a^{8}-\frac{5}{17}a^{7}-\frac{8}{17}a^{6}-\frac{5}{17}a^{5}+\frac{4}{17}a^{4}+\frac{2}{17}a^{3}-\frac{7}{17}a^{2}-\frac{1}{17}a$, $\frac{1}{17}a^{14}+\frac{7}{17}a^{11}-\frac{1}{17}a^{10}-\frac{7}{17}a^{9}+\frac{1}{17}a^{6}+\frac{7}{17}a^{3}-\frac{1}{17}a^{2}-\frac{7}{17}a$, $\frac{1}{29\cdots 01}a^{15}-\frac{76\cdots 47}{29\cdots 01}a^{14}+\frac{44\cdots 10}{17\cdots 53}a^{13}-\frac{51\cdots 93}{29\cdots 01}a^{12}+\frac{10\cdots 92}{29\cdots 01}a^{11}-\frac{13\cdots 01}{29\cdots 01}a^{10}+\frac{70\cdots 48}{29\cdots 01}a^{9}-\frac{956251965024231}{30\cdots 33}a^{8}+\frac{13\cdots 50}{29\cdots 01}a^{7}+\frac{46\cdots 06}{29\cdots 01}a^{6}+\frac{11\cdots 68}{30\cdots 33}a^{5}-\frac{22\cdots 89}{29\cdots 01}a^{4}-\frac{30\cdots 71}{29\cdots 01}a^{3}+\frac{68\cdots 58}{29\cdots 01}a^{2}-\frac{70\cdots 48}{29\cdots 01}a-\frac{63\cdots 54}{17\cdots 53}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}\times C_{6}$, which has order $18$ |
| |
| Narrow class group: | $C_{3}\times C_{6}$, which has order $18$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{297123372}{250881362689}a^{15}+\frac{15026297298}{250881362689}a^{14}+\frac{48675980}{14757727217}a^{13}-\frac{128346963756}{250881362689}a^{12}-\frac{229702264904}{250881362689}a^{11}+\frac{350323112166}{250881362689}a^{10}+\frac{1493379623328}{250881362689}a^{9}+\frac{4438412362879}{250881362689}a^{8}+\frac{9403625666428}{250881362689}a^{7}+\frac{20630638582682}{250881362689}a^{6}+\frac{25764541628796}{250881362689}a^{5}+\frac{41541192076864}{250881362689}a^{4}+\frac{31454152325096}{250881362689}a^{3}+\frac{38395166567974}{250881362689}a^{2}+\frac{13488245869800}{250881362689}a+\frac{797829850722}{14757727217}$, $\frac{515757468824918}{30\cdots 33}a^{15}-\frac{23\cdots 60}{30\cdots 33}a^{14}-\frac{252116926048548}{17\cdots 49}a^{13}+\frac{12\cdots 09}{30\cdots 33}a^{12}+\frac{46\cdots 42}{30\cdots 33}a^{11}-\frac{12\cdots 33}{30\cdots 33}a^{10}-\frac{78\cdots 76}{30\cdots 33}a^{9}-\frac{37\cdots 76}{30\cdots 33}a^{8}-\frac{79\cdots 88}{30\cdots 33}a^{7}-\frac{23\cdots 48}{30\cdots 33}a^{6}-\frac{27\cdots 94}{30\cdots 33}a^{5}-\frac{55\cdots 68}{30\cdots 33}a^{4}-\frac{38\cdots 28}{30\cdots 33}a^{3}-\frac{58\cdots 55}{30\cdots 33}a^{2}-\frac{18\cdots 54}{30\cdots 33}a-\frac{13\cdots 54}{17\cdots 49}$, $\frac{480073843217834}{30\cdots 33}a^{15}-\frac{541185905579154}{30\cdots 33}a^{14}-\frac{14486534522264}{104256397975297}a^{13}-\frac{30\cdots 23}{30\cdots 33}a^{12}+\frac{19\cdots 54}{30\cdots 33}a^{11}+\frac{40\cdots 69}{30\cdots 33}a^{10}+\frac{10\cdots 40}{30\cdots 33}a^{9}+\frac{15\cdots 87}{30\cdots 33}a^{8}+\frac{33\cdots 28}{30\cdots 33}a^{7}+\frac{10\cdots 06}{30\cdots 33}a^{6}+\frac{37\cdots 18}{30\cdots 33}a^{5}-\frac{59\cdots 60}{30\cdots 33}a^{4}-\frac{75\cdots 16}{30\cdots 33}a^{3}-\frac{11\cdots 77}{30\cdots 33}a^{2}-\frac{20\cdots 54}{30\cdots 33}a-\frac{38\cdots 69}{17\cdots 49}$, $\frac{15\cdots 36}{29\cdots 01}a^{15}+\frac{49\cdots 49}{29\cdots 01}a^{14}-\frac{82\cdots 12}{17\cdots 53}a^{13}-\frac{29\cdots 33}{29\cdots 01}a^{12}+\frac{30\cdots 58}{29\cdots 01}a^{11}+\frac{18\cdots 54}{29\cdots 01}a^{10}+\frac{55\cdots 54}{29\cdots 01}a^{9}+\frac{12\cdots 76}{30\cdots 33}a^{8}+\frac{25\cdots 76}{29\cdots 01}a^{7}+\frac{36\cdots 98}{29\cdots 01}a^{6}+\frac{55\cdots 96}{30\cdots 33}a^{5}+\frac{48\cdots 58}{29\cdots 01}a^{4}+\frac{49\cdots 23}{29\cdots 01}a^{3}+\frac{25\cdots 15}{29\cdots 01}a^{2}+\frac{16\cdots 11}{29\cdots 01}a+\frac{20\cdots 04}{17\cdots 53}$, $\frac{24\cdots 11}{29\cdots 01}a^{15}-\frac{27\cdots 17}{29\cdots 01}a^{14}-\frac{13\cdots 15}{17\cdots 53}a^{13}-\frac{14\cdots 34}{29\cdots 01}a^{12}+\frac{11\cdots 95}{29\cdots 01}a^{11}+\frac{22\cdots 05}{29\cdots 01}a^{10}+\frac{44\cdots 85}{29\cdots 01}a^{9}+\frac{67\cdots 64}{30\cdots 33}a^{8}+\frac{14\cdots 36}{29\cdots 01}a^{7}+\frac{12\cdots 50}{29\cdots 01}a^{6}+\frac{90\cdots 66}{30\cdots 33}a^{5}-\frac{34\cdots 86}{29\cdots 01}a^{4}-\frac{13\cdots 75}{29\cdots 01}a^{3}-\frac{48\cdots 70}{29\cdots 01}a^{2}-\frac{10\cdots 11}{29\cdots 01}a-\frac{10\cdots 13}{17\cdots 53}$, $\frac{21\cdots 05}{29\cdots 01}a^{15}-\frac{37\cdots 17}{29\cdots 01}a^{14}+\frac{11\cdots 79}{17\cdots 53}a^{13}+\frac{67\cdots 60}{29\cdots 01}a^{12}+\frac{53\cdots 02}{29\cdots 01}a^{11}-\frac{33\cdots 25}{29\cdots 01}a^{10}-\frac{10\cdots 94}{29\cdots 01}a^{9}-\frac{26\cdots 17}{30\cdots 33}a^{8}-\frac{55\cdots 99}{29\cdots 01}a^{7}-\frac{92\cdots 43}{29\cdots 01}a^{6}-\frac{13\cdots 36}{30\cdots 33}a^{5}-\frac{15\cdots 90}{29\cdots 01}a^{4}-\frac{13\cdots 56}{29\cdots 01}a^{3}-\frac{11\cdots 92}{29\cdots 01}a^{2}-\frac{50\cdots 15}{29\cdots 01}a-\frac{18\cdots 77}{17\cdots 53}$, $\frac{49\cdots 85}{29\cdots 01}a^{15}+\frac{87\cdots 30}{29\cdots 01}a^{14}-\frac{27\cdots 02}{17\cdots 53}a^{13}-\frac{15\cdots 09}{29\cdots 01}a^{12}+\frac{819136597885034}{29\cdots 01}a^{11}+\frac{77\cdots 59}{29\cdots 01}a^{10}+\frac{24\cdots 43}{29\cdots 01}a^{9}+\frac{61\cdots 59}{30\cdots 33}a^{8}+\frac{12\cdots 93}{29\cdots 01}a^{7}+\frac{20\cdots 14}{29\cdots 01}a^{6}+\frac{29\cdots 85}{30\cdots 33}a^{5}+\frac{34\cdots 87}{29\cdots 01}a^{4}+\frac{29\cdots 48}{29\cdots 01}a^{3}+\frac{26\cdots 06}{29\cdots 01}a^{2}+\frac{10\cdots 76}{29\cdots 01}a+\frac{43\cdots 99}{17\cdots 53}$
|
| |
| Regulator: | \( 28179.76782913505 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 28179.76782913505 \cdot 18}{2\cdot\sqrt{484116351470433472610304}}\cr\approx \mathstrut & 0.885409120296159 \end{aligned}\]
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.2.9216.1, \(\Q(\zeta_{16})^+\), 4.2.18432.3, 8.4.2147483648.1, 8.0.173946175488.1, 8.4.5435817984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 16 sibling: | 16.8.484116351470433472610304.4 |
| Minimal sibling: | 16.8.484116351470433472610304.4 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.1.0.1}{1} }^{16}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{8}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.66h1.520 | $x^{16} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 8 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 34$ | $16$ | $1$ | $66$ | $C_2^2 : C_8$ | $$[2, 3, \frac{7}{2}, 4, 5]$$ |
|
\(3\)
| 3.8.2.8a1.2 | $x^{16} + 4 x^{13} + 2 x^{12} + 8 x^{10} + 8 x^{9} + 5 x^{8} + 8 x^{7} + 12 x^{6} + 12 x^{5} + 8 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 7$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $$[\ ]_{2}^{8}$$ |