Normalized defining polynomial
\( x^{16} - 6 x^{15} + 27 x^{14} - 86 x^{13} + 482 x^{12} - 2230 x^{11} + 9081 x^{10} - 30942 x^{9} + \cdots + 873203 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(400734980167009195224860426161\)
\(\medspace = 13^{8}\cdot 53^{12}\)
|
| |
Root discriminant: | \(70.82\) |
| |
Galois root discriminant: | $13^{3/4}53^{3/4}\approx 134.48207963630105$ | ||
Ramified primes: |
\(13\), \(53\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_4$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | 8.0.3745777030801.2 |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{26}a^{12}-\frac{2}{13}a^{11}-\frac{5}{26}a^{9}-\frac{3}{13}a^{8}+\frac{5}{13}a^{7}+\frac{6}{13}a^{6}-\frac{1}{26}a^{5}+\frac{5}{13}a^{4}-\frac{9}{26}a^{3}+\frac{11}{26}a^{2}+\frac{5}{26}a+\frac{1}{13}$, $\frac{1}{26}a^{13}-\frac{3}{26}a^{11}-\frac{5}{26}a^{10}-\frac{1}{26}a^{8}-\frac{5}{26}a^{6}+\frac{3}{13}a^{5}-\frac{4}{13}a^{4}+\frac{1}{26}a^{3}+\frac{5}{13}a^{2}+\frac{9}{26}a-\frac{5}{26}$, $\frac{1}{26}a^{14}-\frac{2}{13}a^{11}-\frac{3}{26}a^{9}-\frac{5}{26}a^{8}+\frac{6}{13}a^{7}+\frac{3}{26}a^{6}+\frac{1}{13}a^{5}+\frac{5}{26}a^{4}-\frac{2}{13}a^{3}+\frac{3}{26}a^{2}+\frac{5}{13}a+\frac{3}{13}$, $\frac{1}{11\cdots 78}a^{15}+\frac{44\cdots 05}{11\cdots 78}a^{14}-\frac{91\cdots 29}{11\cdots 78}a^{13}+\frac{71\cdots 41}{56\cdots 89}a^{12}-\frac{13\cdots 40}{56\cdots 89}a^{11}+\frac{15\cdots 77}{11\cdots 78}a^{10}+\frac{26\cdots 79}{11\cdots 78}a^{9}-\frac{15\cdots 97}{11\cdots 78}a^{8}+\frac{25\cdots 34}{56\cdots 89}a^{7}-\frac{15\cdots 33}{56\cdots 89}a^{6}+\frac{26\cdots 33}{56\cdots 89}a^{5}-\frac{15\cdots 13}{56\cdots 89}a^{4}-\frac{27\cdots 54}{56\cdots 89}a^{3}-\frac{37\cdots 91}{87\cdots 06}a^{2}+\frac{23\cdots 43}{56\cdots 89}a+\frac{19\cdots 42}{56\cdots 89}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}\times C_{8}$, which has order $16$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{8}$, which has order $16$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{79\cdots 05}{19\cdots 62}a^{15}-\frac{10\cdots 94}{95\cdots 31}a^{14}+\frac{10\cdots 23}{19\cdots 62}a^{13}-\frac{18\cdots 91}{19\cdots 62}a^{12}+\frac{25\cdots 83}{19\cdots 62}a^{11}-\frac{60\cdots 79}{14\cdots 74}a^{10}+\frac{25\cdots 45}{14\cdots 74}a^{9}-\frac{65\cdots 73}{14\cdots 74}a^{8}+\frac{11\cdots 71}{95\cdots 31}a^{7}-\frac{36\cdots 01}{19\cdots 62}a^{6}+\frac{74\cdots 33}{19\cdots 62}a^{5}-\frac{41\cdots 62}{95\cdots 31}a^{4}+\frac{67\cdots 85}{19\cdots 62}a^{3}-\frac{55\cdots 05}{95\cdots 31}a^{2}-\frac{21\cdots 96}{95\cdots 31}a+\frac{80\cdots 79}{19\cdots 62}$, $\frac{23\cdots 03}{19\cdots 62}a^{15}+\frac{83\cdots 31}{19\cdots 62}a^{14}-\frac{41\cdots 15}{19\cdots 62}a^{13}+\frac{45\cdots 61}{95\cdots 31}a^{12}+\frac{33\cdots 45}{19\cdots 62}a^{11}+\frac{31\cdots 91}{95\cdots 31}a^{10}-\frac{14\cdots 74}{95\cdots 31}a^{9}+\frac{11\cdots 74}{95\cdots 31}a^{8}-\frac{91\cdots 09}{19\cdots 62}a^{7}+\frac{16\cdots 45}{95\cdots 31}a^{6}-\frac{76\cdots 59}{19\cdots 62}a^{5}+\frac{17\cdots 93}{19\cdots 62}a^{4}-\frac{16\cdots 66}{95\cdots 31}a^{3}+\frac{49\cdots 31}{19\cdots 62}a^{2}-\frac{33\cdots 73}{14\cdots 74}a+\frac{83\cdots 21}{19\cdots 62}$, $\frac{46\cdots 43}{19\cdots 62}a^{15}-\frac{11\cdots 74}{95\cdots 31}a^{14}+\frac{45\cdots 45}{19\cdots 62}a^{13}-\frac{41\cdots 29}{19\cdots 62}a^{12}+\frac{11\cdots 93}{19\cdots 62}a^{11}-\frac{66\cdots 61}{19\cdots 62}a^{10}+\frac{15\cdots 11}{19\cdots 62}a^{9}-\frac{26\cdots 31}{19\cdots 62}a^{8}+\frac{18\cdots 67}{95\cdots 31}a^{7}+\frac{70\cdots 09}{14\cdots 74}a^{6}-\frac{23\cdots 01}{14\cdots 74}a^{5}+\frac{41\cdots 94}{95\cdots 31}a^{4}-\frac{12\cdots 29}{14\cdots 74}a^{3}+\frac{14\cdots 09}{95\cdots 31}a^{2}-\frac{15\cdots 82}{95\cdots 31}a+\frac{20\cdots 39}{19\cdots 62}$, $\frac{71\cdots 83}{11\cdots 78}a^{15}-\frac{84\cdots 03}{11\cdots 78}a^{14}+\frac{28\cdots 85}{11\cdots 78}a^{13}-\frac{12\cdots 75}{11\cdots 78}a^{12}+\frac{44\cdots 11}{11\cdots 78}a^{11}-\frac{30\cdots 59}{11\cdots 78}a^{10}+\frac{10\cdots 03}{11\cdots 78}a^{9}-\frac{41\cdots 05}{11\cdots 78}a^{8}+\frac{56\cdots 47}{56\cdots 89}a^{7}-\frac{30\cdots 29}{11\cdots 78}a^{6}+\frac{59\cdots 97}{11\cdots 78}a^{5}-\frac{63\cdots 87}{56\cdots 89}a^{4}+\frac{16\cdots 81}{11\cdots 78}a^{3}-\frac{19\cdots 89}{87\cdots 06}a^{2}+\frac{21\cdots 37}{11\cdots 78}a-\frac{17\cdots 75}{11\cdots 78}$, $\frac{12\cdots 78}{56\cdots 89}a^{15}+\frac{92\cdots 88}{56\cdots 89}a^{14}-\frac{14\cdots 23}{56\cdots 89}a^{13}+\frac{11\cdots 52}{56\cdots 89}a^{12}+\frac{47\cdots 09}{11\cdots 78}a^{11}+\frac{24\cdots 28}{56\cdots 89}a^{10}-\frac{53\cdots 48}{56\cdots 89}a^{9}+\frac{62\cdots 43}{11\cdots 78}a^{8}-\frac{58\cdots 93}{56\cdots 89}a^{7}+\frac{16\cdots 58}{56\cdots 89}a^{6}-\frac{72\cdots 80}{56\cdots 89}a^{5}+\frac{68\cdots 63}{11\cdots 78}a^{4}-\frac{10\cdots 93}{56\cdots 89}a^{3}+\frac{81\cdots 87}{87\cdots 06}a^{2}-\frac{43\cdots 61}{11\cdots 78}a+\frac{36\cdots 77}{11\cdots 78}$, $\frac{23\cdots 01}{11\cdots 78}a^{15}-\frac{59\cdots 85}{56\cdots 89}a^{14}+\frac{37\cdots 79}{11\cdots 78}a^{13}-\frac{58\cdots 30}{56\cdots 89}a^{12}+\frac{40\cdots 56}{56\cdots 89}a^{11}-\frac{20\cdots 17}{56\cdots 89}a^{10}+\frac{64\cdots 42}{56\cdots 89}a^{9}-\frac{21\cdots 87}{56\cdots 89}a^{8}+\frac{53\cdots 08}{56\cdots 89}a^{7}-\frac{11\cdots 06}{56\cdots 89}a^{6}+\frac{22\cdots 05}{56\cdots 89}a^{5}-\frac{38\cdots 39}{56\cdots 89}a^{4}+\frac{98\cdots 09}{11\cdots 78}a^{3}-\frac{10\cdots 49}{87\cdots 06}a^{2}+\frac{11\cdots 53}{11\cdots 78}a-\frac{91\cdots 83}{11\cdots 78}$, $\frac{67\cdots 51}{87\cdots 06}a^{15}-\frac{83\cdots 50}{33\cdots 81}a^{14}+\frac{10\cdots 03}{87\cdots 06}a^{13}-\frac{15\cdots 62}{43\cdots 53}a^{12}+\frac{12\cdots 86}{43\cdots 53}a^{11}-\frac{43\cdots 66}{43\cdots 53}a^{10}+\frac{17\cdots 18}{43\cdots 53}a^{9}-\frac{58\cdots 20}{43\cdots 53}a^{8}+\frac{15\cdots 11}{43\cdots 53}a^{7}-\frac{35\cdots 40}{43\cdots 53}a^{6}+\frac{77\cdots 35}{43\cdots 53}a^{5}-\frac{12\cdots 21}{43\cdots 53}a^{4}+\frac{39\cdots 65}{87\cdots 06}a^{3}-\frac{51\cdots 31}{87\cdots 06}a^{2}+\frac{46\cdots 93}{87\cdots 06}a-\frac{25\cdots 67}{87\cdots 06}$
|
| |
Regulator: | \( 7655259.72698 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 7655259.72698 \cdot 16}{2\cdot\sqrt{400734980167009195224860426161}}\cr\approx \mathstrut & 0.234995873952 \end{aligned}\] (assuming GRH)
Galois group
$C_2^3.D_4$ (as 16T153):
A solvable group of order 64 |
The 13 conjugacy class representatives for $C_2^3.D_4$ |
Character table for $C_2^3.D_4$ |
Intermediate fields
\(\Q(\sqrt{53}) \), 4.4.36517.1, 4.0.148877.1, 4.0.1935401.1, 8.0.3745777030801.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.0.67724211648224553993001412021209.23 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(13\)
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
13.1.4.3a1.1 | $x^{4} + 13$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
13.1.4.3a1.1 | $x^{4} + 13$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
\(53\)
| 53.2.4.6a1.2 | $x^{8} + 196 x^{7} + 14414 x^{6} + 471772 x^{5} + 5822449 x^{4} + 943544 x^{3} + 57656 x^{2} + 1568 x + 69$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
53.2.4.6a1.2 | $x^{8} + 196 x^{7} + 14414 x^{6} + 471772 x^{5} + 5822449 x^{4} + 943544 x^{3} + 57656 x^{2} + 1568 x + 69$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |