Properties

Label 16.0.215...625.3
Degree $16$
Signature $[0, 8]$
Discriminant $2.160\times 10^{27}$
Root discriminant \(51.10\)
Ramified primes $5,29$
Class number $48$ (GRH)
Class group [2, 24] (GRH)
Galois group $C_2^3.D_4$ (as 16T153)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 7*x^15 + 17*x^14 - 41*x^13 + 151*x^12 - 72*x^11 - 1195*x^10 + 2912*x^9 + 94*x^8 - 11284*x^7 + 13415*x^6 + 19461*x^5 - 35409*x^4 - 25873*x^3 + 41313*x^2 + 43416*x + 11421)
 
Copy content gp:K = bnfinit(y^16 - 7*y^15 + 17*y^14 - 41*y^13 + 151*y^12 - 72*y^11 - 1195*y^10 + 2912*y^9 + 94*y^8 - 11284*y^7 + 13415*y^6 + 19461*y^5 - 35409*y^4 - 25873*y^3 + 41313*y^2 + 43416*y + 11421, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 7*x^15 + 17*x^14 - 41*x^13 + 151*x^12 - 72*x^11 - 1195*x^10 + 2912*x^9 + 94*x^8 - 11284*x^7 + 13415*x^6 + 19461*x^5 - 35409*x^4 - 25873*x^3 + 41313*x^2 + 43416*x + 11421);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 7*x^15 + 17*x^14 - 41*x^13 + 151*x^12 - 72*x^11 - 1195*x^10 + 2912*x^9 + 94*x^8 - 11284*x^7 + 13415*x^6 + 19461*x^5 - 35409*x^4 - 25873*x^3 + 41313*x^2 + 43416*x + 11421)
 

\( x^{16} - 7 x^{15} + 17 x^{14} - 41 x^{13} + 151 x^{12} - 72 x^{11} - 1195 x^{10} + 2912 x^{9} + \cdots + 11421 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(2159514057650567877197265625\) \(\medspace = 5^{14}\cdot 29^{12}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(51.10\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{7/8}29^{3/4}\approx 51.09721761228082$
Ramified primes:   \(5\), \(29\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  8.0.9294114390625.1

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6}a^{9}+\frac{1}{6}a^{8}+\frac{1}{3}a^{6}-\frac{1}{2}a^{5}-\frac{1}{6}a^{4}-\frac{1}{2}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{2}$, $\frac{1}{6}a^{10}-\frac{1}{6}a^{8}+\frac{1}{3}a^{7}+\frac{1}{6}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{6}a^{3}-\frac{1}{3}a^{2}+\frac{1}{6}a-\frac{1}{2}$, $\frac{1}{6}a^{11}-\frac{1}{2}a^{8}+\frac{1}{6}a^{7}-\frac{1}{3}a^{6}+\frac{1}{6}a^{5}+\frac{1}{6}a^{3}-\frac{1}{6}a^{2}-\frac{1}{6}a-\frac{1}{2}$, $\frac{1}{18}a^{12}+\frac{1}{18}a^{11}-\frac{1}{18}a^{10}+\frac{1}{18}a^{9}+\frac{1}{6}a^{8}-\frac{1}{6}a^{7}-\frac{1}{18}a^{5}-\frac{7}{18}a^{4}-\frac{1}{18}a^{3}+\frac{2}{9}a^{2}+\frac{1}{6}a$, $\frac{1}{18}a^{13}+\frac{1}{18}a^{11}-\frac{1}{18}a^{10}-\frac{1}{18}a^{9}+\frac{1}{6}a^{8}+\frac{1}{9}a^{6}-\frac{1}{6}a^{4}-\frac{2}{9}a^{3}+\frac{4}{9}a^{2}+\frac{1}{6}a-\frac{1}{2}$, $\frac{1}{3132}a^{14}+\frac{55}{3132}a^{13}-\frac{43}{1566}a^{12}+\frac{10}{261}a^{11}-\frac{185}{3132}a^{10}+\frac{79}{1566}a^{9}-\frac{217}{522}a^{8}+\frac{595}{1566}a^{7}-\frac{22}{783}a^{6}+\frac{119}{522}a^{5}-\frac{487}{3132}a^{4}-\frac{1061}{3132}a^{3}-\frac{226}{783}a^{2}+\frac{64}{261}a-\frac{3}{116}$, $\frac{1}{14\cdots 12}a^{15}-\frac{31\cdots 03}{24\cdots 52}a^{14}-\frac{33\cdots 49}{16\cdots 68}a^{13}+\frac{20\cdots 57}{74\cdots 56}a^{12}-\frac{75\cdots 03}{14\cdots 12}a^{11}-\frac{26\cdots 87}{51\cdots 28}a^{10}-\frac{59\cdots 23}{74\cdots 56}a^{9}-\frac{19\cdots 79}{74\cdots 56}a^{8}-\frac{35\cdots 97}{12\cdots 26}a^{7}+\frac{79\cdots 58}{18\cdots 89}a^{6}+\frac{67\cdots 71}{14\cdots 12}a^{5}+\frac{71\cdots 95}{37\cdots 78}a^{4}+\frac{40\cdots 55}{14\cdots 12}a^{3}-\frac{11\cdots 27}{74\cdots 56}a^{2}-\frac{19\cdots 19}{49\cdots 04}a-\frac{17\cdots 27}{55\cdots 56}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $3$

Class group and class number

Ideal class group:  $C_{2}\times C_{24}$, which has order $48$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{24}$, which has order $48$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $7$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{26\cdots 70}{18\cdots 89}a^{15}-\frac{37\cdots 67}{37\cdots 78}a^{14}+\frac{14\cdots 93}{64\cdots 41}a^{13}-\frac{28\cdots 18}{62\cdots 63}a^{12}+\frac{22\cdots 93}{12\cdots 82}a^{11}+\frac{10\cdots 09}{37\cdots 78}a^{10}-\frac{25\cdots 33}{12\cdots 26}a^{9}+\frac{84\cdots 24}{18\cdots 89}a^{8}+\frac{24\cdots 34}{18\cdots 89}a^{7}-\frac{26\cdots 43}{12\cdots 26}a^{6}+\frac{47\cdots 72}{18\cdots 89}a^{5}+\frac{61\cdots 79}{18\cdots 89}a^{4}-\frac{13\cdots 56}{18\cdots 89}a^{3}-\frac{14\cdots 17}{62\cdots 63}a^{2}+\frac{14\cdots 22}{20\cdots 21}a+\frac{49\cdots 75}{13\cdots 14}$, $\frac{21\cdots 67}{37\cdots 78}a^{15}-\frac{33\cdots 35}{74\cdots 56}a^{14}+\frac{99\cdots 37}{74\cdots 56}a^{13}-\frac{42\cdots 47}{12\cdots 26}a^{12}+\frac{42\cdots 21}{37\cdots 78}a^{11}-\frac{96\cdots 25}{74\cdots 56}a^{10}-\frac{36\cdots 03}{62\cdots 63}a^{9}+\frac{27\cdots 59}{12\cdots 82}a^{8}-\frac{61\cdots 79}{37\cdots 78}a^{7}-\frac{22\cdots 33}{41\cdots 42}a^{6}+\frac{15\cdots 27}{12\cdots 82}a^{5}+\frac{13\cdots 43}{74\cdots 56}a^{4}-\frac{17\cdots 67}{74\cdots 56}a^{3}+\frac{25\cdots 43}{62\cdots 63}a^{2}+\frac{15\cdots 16}{68\cdots 07}a+\frac{14\cdots 19}{27\cdots 28}$, $\frac{38\cdots 11}{14\cdots 12}a^{15}-\frac{10\cdots 02}{62\cdots 63}a^{14}+\frac{18\cdots 09}{49\cdots 04}a^{13}-\frac{77\cdots 47}{74\cdots 56}a^{12}+\frac{56\cdots 63}{14\cdots 12}a^{11}-\frac{12\cdots 99}{14\cdots 12}a^{10}-\frac{20\cdots 83}{74\cdots 56}a^{9}+\frac{45\cdots 05}{74\cdots 56}a^{8}+\frac{13\cdots 17}{62\cdots 63}a^{7}-\frac{43\cdots 39}{18\cdots 89}a^{6}+\frac{38\cdots 05}{14\cdots 12}a^{5}+\frac{28\cdots 65}{74\cdots 56}a^{4}-\frac{69\cdots 13}{14\cdots 12}a^{3}-\frac{22\cdots 97}{74\cdots 56}a^{2}+\frac{17\cdots 67}{49\cdots 04}a+\frac{11\cdots 57}{55\cdots 56}$, $\frac{23\cdots 23}{14\cdots 12}a^{15}-\frac{10\cdots 07}{82\cdots 84}a^{14}+\frac{18\cdots 15}{49\cdots 04}a^{13}-\frac{73\cdots 21}{74\cdots 56}a^{12}+\frac{49\cdots 91}{14\cdots 12}a^{11}-\frac{58\cdots 85}{14\cdots 12}a^{10}-\frac{11\cdots 85}{74\cdots 56}a^{9}+\frac{42\cdots 95}{74\cdots 56}a^{8}-\frac{20\cdots 79}{41\cdots 42}a^{7}-\frac{21\cdots 99}{18\cdots 89}a^{6}+\frac{45\cdots 57}{14\cdots 12}a^{5}-\frac{15\cdots 79}{37\cdots 78}a^{4}-\frac{70\cdots 91}{14\cdots 12}a^{3}+\frac{10\cdots 39}{74\cdots 56}a^{2}+\frac{21\cdots 63}{49\cdots 04}a+\frac{84\cdots 15}{55\cdots 56}$, $\frac{31\cdots 03}{55\cdots 56}a^{15}-\frac{55\cdots 33}{74\cdots 56}a^{14}+\frac{49\cdots 19}{14\cdots 12}a^{13}-\frac{65\cdots 99}{74\cdots 56}a^{12}+\frac{13\cdots 15}{49\cdots 04}a^{11}-\frac{34\cdots 83}{51\cdots 28}a^{10}-\frac{10\cdots 87}{74\cdots 56}a^{9}+\frac{11\cdots 83}{24\cdots 52}a^{8}-\frac{17\cdots 31}{18\cdots 89}a^{7}+\frac{48\cdots 03}{37\cdots 78}a^{6}+\frac{15\cdots 53}{55\cdots 56}a^{5}-\frac{11\cdots 61}{37\cdots 78}a^{4}-\frac{45\cdots 65}{14\cdots 12}a^{3}+\frac{26\cdots 95}{74\cdots 56}a^{2}+\frac{15\cdots 45}{49\cdots 04}a+\frac{32\cdots 85}{55\cdots 56}$, $\frac{13\cdots 73}{14\cdots 12}a^{15}-\frac{50\cdots 05}{74\cdots 56}a^{14}+\frac{31\cdots 91}{14\cdots 12}a^{13}-\frac{49\cdots 41}{74\cdots 56}a^{12}+\frac{33\cdots 61}{14\cdots 12}a^{11}-\frac{59\cdots 51}{16\cdots 68}a^{10}-\frac{21\cdots 29}{74\cdots 56}a^{9}+\frac{14\cdots 59}{74\cdots 56}a^{8}-\frac{61\cdots 69}{37\cdots 78}a^{7}-\frac{18\cdots 47}{37\cdots 78}a^{6}+\frac{15\cdots 99}{14\cdots 12}a^{5}+\frac{32\cdots 46}{68\cdots 07}a^{4}-\frac{99\cdots 03}{49\cdots 04}a^{3}-\frac{90\cdots 09}{74\cdots 56}a^{2}+\frac{40\cdots 33}{17\cdots 76}a+\frac{49\cdots 61}{55\cdots 56}$, $\frac{23082125309571}{78\cdots 11}a^{15}-\frac{181335779865926}{78\cdots 11}a^{14}+\frac{546148021263256}{78\cdots 11}a^{13}-\frac{13\cdots 33}{78\cdots 11}a^{12}+\frac{46\cdots 92}{78\cdots 11}a^{11}-\frac{54\cdots 70}{78\cdots 11}a^{10}-\frac{23\cdots 01}{78\cdots 11}a^{9}+\frac{88\cdots 79}{78\cdots 11}a^{8}-\frac{71\cdots 06}{78\cdots 11}a^{7}-\frac{20\cdots 49}{78\cdots 11}a^{6}+\frac{50\cdots 72}{78\cdots 11}a^{5}+\frac{10\cdots 35}{269319553305059}a^{4}-\frac{31\cdots 43}{269319553305059}a^{3}+\frac{21\cdots 27}{78\cdots 11}a^{2}+\frac{80\cdots 75}{78\cdots 11}a+\frac{99\cdots 28}{78\cdots 11}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1810504.50906 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 1810504.50906 \cdot 48}{2\cdot\sqrt{2159514057650567877197265625}}\cr\approx \mathstrut & 2.27128577844 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 7*x^15 + 17*x^14 - 41*x^13 + 151*x^12 - 72*x^11 - 1195*x^10 + 2912*x^9 + 94*x^8 - 11284*x^7 + 13415*x^6 + 19461*x^5 - 35409*x^4 - 25873*x^3 + 41313*x^2 + 43416*x + 11421) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 7*x^15 + 17*x^14 - 41*x^13 + 151*x^12 - 72*x^11 - 1195*x^10 + 2912*x^9 + 94*x^8 - 11284*x^7 + 13415*x^6 + 19461*x^5 - 35409*x^4 - 25873*x^3 + 41313*x^2 + 43416*x + 11421, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 7*x^15 + 17*x^14 - 41*x^13 + 151*x^12 - 72*x^11 - 1195*x^10 + 2912*x^9 + 94*x^8 - 11284*x^7 + 13415*x^6 + 19461*x^5 - 35409*x^4 - 25873*x^3 + 41313*x^2 + 43416*x + 11421); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 7*x^15 + 17*x^14 - 41*x^13 + 151*x^12 - 72*x^11 - 1195*x^10 + 2912*x^9 + 94*x^8 - 11284*x^7 + 13415*x^6 + 19461*x^5 - 35409*x^4 - 25873*x^3 + 41313*x^2 + 43416*x + 11421); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^3.D_4$ (as 16T153):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 64
The 13 conjugacy class representatives for $C_2^3.D_4$
Character table for $C_2^3.D_4$

Intermediate fields

\(\Q(\sqrt{145}) \), 4.0.105125.1, 4.4.3048625.2, 4.0.609725.1, 8.0.9294114390625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: 16.8.2159514057650567877197265625.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{4}$ ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{4}$ R ${\href{/padicField/7.8.0.1}{8} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.8.0.1}{8} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{4}$ ${\href{/padicField/19.4.0.1}{4} }^{4}$ ${\href{/padicField/23.8.0.1}{8} }^{2}$ R ${\href{/padicField/31.4.0.1}{4} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ ${\href{/padicField/53.8.0.1}{8} }^{2}$ ${\href{/padicField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.1.8.7a1.4$x^{8} + 20$$8$$1$$7$$C_8:C_2$$$[\ ]_{8}^{2}$$
5.1.8.7a1.4$x^{8} + 20$$8$$1$$7$$C_8:C_2$$$[\ ]_{8}^{2}$$
\(29\) Copy content Toggle raw display 29.1.4.3a1.3$x^{4} + 116$$4$$1$$3$$C_4$$$[\ ]_{4}$$
29.1.4.3a1.3$x^{4} + 116$$4$$1$$3$$C_4$$$[\ ]_{4}$$
29.1.4.3a1.3$x^{4} + 116$$4$$1$$3$$C_4$$$[\ ]_{4}$$
29.1.4.3a1.3$x^{4} + 116$$4$$1$$3$$C_4$$$[\ ]_{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)