Properties

Label 16.0.198...736.1
Degree $16$
Signature $[0, 8]$
Discriminant $1.983\times 10^{25}$
Root discriminant \(38.11\)
Ramified primes $2,389,449$
Class number $112$ (GRH)
Class group [2, 56] (GRH)
Galois group $C_2^5:S_4$ (as 16T1045)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 22*x^14 + 206*x^12 + 1112*x^10 + 4217*x^8 + 12912*x^6 + 29016*x^4 + 31136*x^2 + 13456)
 
gp: K = bnfinit(y^16 + 22*y^14 + 206*y^12 + 1112*y^10 + 4217*y^8 + 12912*y^6 + 29016*y^4 + 31136*y^2 + 13456, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 22*x^14 + 206*x^12 + 1112*x^10 + 4217*x^8 + 12912*x^6 + 29016*x^4 + 31136*x^2 + 13456);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 22*x^14 + 206*x^12 + 1112*x^10 + 4217*x^8 + 12912*x^6 + 29016*x^4 + 31136*x^2 + 13456)
 

\( x^{16} + 22x^{14} + 206x^{12} + 1112x^{10} + 4217x^{8} + 12912x^{6} + 29016x^{4} + 31136x^{2} + 13456 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(19826723432390077223796736\) \(\medspace = 2^{32}\cdot 389^{4}\cdot 449^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(38.11\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{25/12}389^{1/2}449^{1/2}\approx 1771.1029052870458$
Ramified primes:   \(2\), \(389\), \(449\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{14}a^{10}+\frac{3}{7}a^{8}+\frac{2}{7}a^{6}+\frac{5}{14}a^{2}-\frac{1}{7}$, $\frac{1}{28}a^{11}-\frac{2}{7}a^{9}-\frac{5}{14}a^{7}+\frac{5}{28}a^{3}-\frac{1}{14}a$, $\frac{1}{56}a^{12}-\frac{1}{28}a^{10}+\frac{13}{28}a^{8}+\frac{3}{7}a^{6}-\frac{23}{56}a^{4}-\frac{3}{14}$, $\frac{1}{56}a^{13}+\frac{5}{28}a^{9}+\frac{1}{14}a^{7}-\frac{23}{56}a^{5}+\frac{5}{28}a^{3}-\frac{2}{7}a$, $\frac{1}{31793451760}a^{14}-\frac{3929379}{2270960840}a^{12}+\frac{26772217}{15896725880}a^{10}-\frac{150232868}{397418147}a^{8}+\frac{10636729617}{31793451760}a^{6}-\frac{346453494}{1987090735}a^{4}+\frac{2437892847}{7948362940}a^{2}+\frac{839431632}{1987090735}$, $\frac{1}{1844020202080}a^{15}+\frac{139970363}{65857864360}a^{13}-\frac{3947409253}{922010101040}a^{11}-\frac{30407292497}{92201010104}a^{9}-\frac{847786467903}{1844020202080}a^{7}-\frac{80268166617}{922010101040}a^{5}-\frac{37303921853}{461005050520}a^{3}+\frac{7640135469}{230502525260}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{56}$, which has order $112$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{212335581}{368804040416}a^{15}+\frac{277312121}{23050252526}a^{13}+\frac{19512811019}{184402020208}a^{11}+\frac{48900200141}{92201010104}a^{9}+\frac{694743026205}{368804040416}a^{7}+\frac{1013454073265}{184402020208}a^{5}+\frac{1022456213587}{92201010104}a^{3}+\frac{305990825751}{46100505052}a$, $\frac{8229}{23674672}a^{15}+\frac{88489}{11837336}a^{13}+\frac{793705}{11837336}a^{11}+\frac{1005269}{2959334}a^{9}+\frac{28678277}{23674672}a^{7}+\frac{21276193}{5918668}a^{5}+\frac{43562467}{5918668}a^{3}+\frac{6548411}{1479667}a+1$, $\frac{8152117}{184402020208}a^{15}+\frac{45970123}{46100505052}a^{13}+\frac{916381693}{92201010104}a^{11}+\frac{2469665671}{46100505052}a^{9}+\frac{35917384813}{184402020208}a^{7}+\frac{7905652713}{13171572872}a^{5}+\frac{4411020325}{3292893218}a^{3}+\frac{9525638800}{11525126263}a$, $\frac{212335581}{368804040416}a^{15}-\frac{531765}{3179345176}a^{14}+\frac{277312121}{23050252526}a^{13}-\frac{11055265}{3179345176}a^{12}+\frac{19512811019}{184402020208}a^{11}-\frac{1599611}{56774021}a^{10}+\frac{48900200141}{92201010104}a^{9}-\frac{186624731}{1589672588}a^{8}+\frac{694743026205}{368804040416}a^{7}-\frac{1054659797}{3179345176}a^{6}+\frac{1013454073265}{184402020208}a^{5}-\frac{2633869267}{3179345176}a^{4}+\frac{1022456213587}{92201010104}a^{3}-\frac{385211123}{397418147}a^{2}+\frac{305990825751}{46100505052}a+\frac{2380443003}{794836294}$, $\frac{49726}{397418147}a^{14}+\frac{6195349}{3179345176}a^{12}+\frac{20274967}{1589672588}a^{10}+\frac{85108089}{1589672588}a^{8}+\frac{78635335}{397418147}a^{6}+\frac{1903086237}{3179345176}a^{4}+\frac{41888414}{56774021}a^{2}-\frac{149649421}{794836294}$, $\frac{121690529}{92201010104}a^{15}+\frac{531765}{3179345176}a^{14}+\frac{2568876203}{92201010104}a^{13}+\frac{11055265}{3179345176}a^{12}+\frac{2839295302}{11525126263}a^{11}+\frac{1599611}{56774021}a^{10}+\frac{57055804941}{46100505052}a^{9}+\frac{186624731}{1589672588}a^{8}+\frac{404363257593}{92201010104}a^{7}+\frac{1054659797}{3179345176}a^{6}+\frac{1177641520989}{92201010104}a^{5}+\frac{2633869267}{3179345176}a^{4}+\frac{592592558105}{23050252526}a^{3}+\frac{385211123}{397418147}a^{2}+\frac{354446533849}{23050252526}a-\frac{3175279297}{794836294}$, $\frac{24898087}{184402020208}a^{15}-\frac{531765}{3179345176}a^{14}+\frac{61730335}{23050252526}a^{13}-\frac{11055265}{3179345176}a^{12}+\frac{2064235155}{92201010104}a^{11}-\frac{1599611}{56774021}a^{10}+\frac{719258573}{6585786436}a^{9}-\frac{186624731}{1589672588}a^{8}+\frac{73474225759}{184402020208}a^{7}-\frac{1054659797}{3179345176}a^{6}+\frac{111913517839}{92201010104}a^{5}-\frac{2633869267}{3179345176}a^{4}+\frac{57412434145}{23050252526}a^{3}-\frac{385211123}{397418147}a^{2}+\frac{17252080430}{11525126263}a+\frac{790770415}{794836294}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 42689.08699965526 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 42689.08699965526 \cdot 112}{2\cdot\sqrt{19826723432390077223796736}}\cr\approx \mathstrut & 1.30412243483984 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 + 22*x^14 + 206*x^12 + 1112*x^10 + 4217*x^8 + 12912*x^6 + 29016*x^4 + 31136*x^2 + 13456)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 + 22*x^14 + 206*x^12 + 1112*x^10 + 4217*x^8 + 12912*x^6 + 29016*x^4 + 31136*x^2 + 13456, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 + 22*x^14 + 206*x^12 + 1112*x^10 + 4217*x^8 + 12912*x^6 + 29016*x^4 + 31136*x^2 + 13456);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 22*x^14 + 206*x^12 + 1112*x^10 + 4217*x^8 + 12912*x^6 + 29016*x^4 + 31136*x^2 + 13456);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^5:S_4$ (as 16T1045):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 768
The 40 conjugacy class representatives for $C_2^5:S_4$
Character table for $C_2^5:S_4$

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.6224.1, 8.0.17393441024.1, 8.0.4452720902144.1, 8.8.9916973056.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }^{2}$ ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ ${\href{/padicField/7.3.0.1}{3} }^{4}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.2.0.1}{2} }^{8}$ ${\href{/padicField/31.8.0.1}{8} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ ${\href{/padicField/41.3.0.1}{3} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ ${\href{/padicField/43.8.0.1}{8} }^{2}$ ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.16.58$x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{2} + 4 x + 2$$8$$1$$16$$S_4\times C_2$$[4/3, 4/3, 3]_{3}^{2}$
2.8.16.58$x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{2} + 4 x + 2$$8$$1$$16$$S_4\times C_2$$[4/3, 4/3, 3]_{3}^{2}$
\(389\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $4$$2$$2$$2$
Deg $4$$2$$2$$2$
\(449\) Copy content Toggle raw display $\Q_{449}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{449}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{449}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{449}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$