Normalized defining polynomial
\( x^{16} - 2 x^{15} + 53 x^{14} - 404 x^{13} + 3150 x^{12} - 16220 x^{11} + 43602 x^{10} - 147216 x^{9} + 562581 x^{8} - 1745730 x^{7} + 3929497 x^{6} - 4677356 x^{5} + 6836220 x^{4} - 10615248 x^{3} + 18312704 x^{2} - 3638272 x + 7929856 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1722945145525970304337872614249761=17^{8}\cdot 89^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $119.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{16} a^{7} + \frac{3}{16} a^{3} - \frac{1}{4} a$, $\frac{1}{128} a^{8} - \frac{1}{32} a^{7} + \frac{1}{64} a^{6} - \frac{1}{16} a^{5} + \frac{1}{128} a^{4} - \frac{1}{32} a^{3} - \frac{1}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{128} a^{9} + \frac{1}{64} a^{7} + \frac{1}{128} a^{5} - \frac{1}{32} a^{3}$, $\frac{1}{256} a^{10} - \frac{1}{256} a^{9} + \frac{3}{128} a^{7} - \frac{3}{256} a^{6} + \frac{15}{256} a^{5} - \frac{3}{128} a^{4} + \frac{3}{64} a^{3} + \frac{1}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{1024} a^{11} - \frac{3}{1024} a^{9} - \frac{1}{256} a^{8} + \frac{7}{1024} a^{7} + \frac{3}{128} a^{6} - \frac{41}{1024} a^{5} + \frac{15}{256} a^{4} + \frac{41}{256} a^{3} - \frac{5}{64} a^{2} - \frac{1}{8} a$, $\frac{1}{40960} a^{12} + \frac{19}{40960} a^{11} - \frac{15}{8192} a^{10} + \frac{107}{40960} a^{9} + \frac{107}{40960} a^{8} - \frac{531}{40960} a^{7} + \frac{43}{8192} a^{6} + \frac{857}{40960} a^{5} - \frac{161}{5120} a^{4} + \frac{1711}{10240} a^{3} + \frac{13}{512} a^{2} - \frac{121}{320} a - \frac{2}{5}$, $\frac{1}{163840} a^{13} - \frac{9}{40960} a^{11} - \frac{17}{40960} a^{10} - \frac{283}{81920} a^{9} - \frac{1}{40960} a^{8} + \frac{259}{10240} a^{7} + \frac{1033}{40960} a^{6} + \frac{6989}{163840} a^{5} - \frac{1931}{40960} a^{4} - \frac{2729}{40960} a^{3} - \frac{283}{10240} a^{2} - \frac{509}{1280} a - \frac{7}{20}$, $\frac{1}{45875200} a^{14} - \frac{13}{5734400} a^{13} - \frac{37}{11468800} a^{12} + \frac{507}{11468800} a^{11} + \frac{37213}{22937600} a^{10} - \frac{3383}{1638400} a^{9} - \frac{803}{358400} a^{8} + \frac{210117}{11468800} a^{7} + \frac{1206301}{45875200} a^{6} + \frac{709839}{11468800} a^{5} - \frac{536881}{11468800} a^{4} - \frac{415357}{2867200} a^{3} - \frac{297}{8960} a^{2} + \frac{1007}{8960} a - \frac{131}{700}$, $\frac{1}{18621504140461727639876403200} a^{15} - \frac{104396809777711582881}{18621504140461727639876403200} a^{14} - \frac{621386483064807666007}{931075207023086381993820160} a^{13} - \frac{823180350349557512809}{83131714912775569820876800} a^{12} - \frac{643678926397435701514229}{1862150414046172763987640320} a^{11} - \frac{14931618962046156842261463}{9310752070230863819938201600} a^{10} + \frac{8920417665094609097874521}{4655376035115431909969100800} a^{9} - \frac{11984059468779165806550411}{4655376035115431909969100800} a^{8} - \frac{1112189250889130782103677}{532042975441763646853611520} a^{7} - \frac{266035376406990632274915321}{18621504140461727639876403200} a^{6} + \frac{379700717512601561248771}{26451000199519499488460800} a^{5} + \frac{264255070596631674716016789}{4655376035115431909969100800} a^{4} + \frac{218355234331492834410173789}{1163844008778857977492275200} a^{3} - \frac{730010909737985996183193}{7274025054867862359326720} a^{2} - \frac{7487652413972725402669599}{18185062637169655898316800} a - \frac{8190975807895912728523}{25831054882343261219200}$
Class group and class number
$C_{301}\times C_{3913}$, which has order $1177813$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 325756301.284 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.8.6.1 | $x^{8} - 4361 x^{4} + 10265616$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 89.8.6.1 | $x^{8} - 4361 x^{4} + 10265616$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |