Normalized defining polynomial
\( x^{16} - 4 x^{15} + 43 x^{14} - 153 x^{13} + 1031 x^{12} - 5509 x^{11} + 31605 x^{10} - 104029 x^{9} + \cdots + 9101501 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(16200860438828040517095947265625\)
\(\medspace = 5^{14}\cdot 61^{12}\)
|
| |
| Root discriminant: | \(89.25\) |
| |
| Galois root discriminant: | $5^{7/8}61^{3/4}\approx 89.24751449797871$ | ||
| Ramified primes: |
\(5\), \(61\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 8.0.216341265625.1 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5}a^{12}+\frac{2}{5}a^{10}-\frac{1}{5}a^{9}-\frac{1}{5}a^{8}+\frac{1}{5}a^{7}-\frac{1}{5}a^{6}-\frac{2}{5}a^{5}+\frac{2}{5}a^{4}+\frac{2}{5}a^{3}-\frac{1}{5}a^{2}+\frac{2}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{13}+\frac{2}{5}a^{11}-\frac{1}{5}a^{10}-\frac{1}{5}a^{9}+\frac{1}{5}a^{8}-\frac{1}{5}a^{7}-\frac{2}{5}a^{6}+\frac{2}{5}a^{5}+\frac{2}{5}a^{4}-\frac{1}{5}a^{3}+\frac{2}{5}a^{2}+\frac{1}{5}a$, $\frac{1}{10}a^{14}-\frac{1}{10}a^{13}-\frac{1}{10}a^{12}-\frac{3}{10}a^{11}-\frac{1}{10}a^{10}-\frac{1}{2}a^{9}+\frac{1}{10}a^{8}+\frac{1}{10}a^{7}-\frac{3}{10}a^{6}+\frac{1}{10}a^{5}+\frac{1}{10}a^{4}-\frac{3}{10}a^{3}-\frac{3}{10}a^{2}+\frac{3}{10}a-\frac{3}{10}$, $\frac{1}{36\cdots 90}a^{15}-\frac{45\cdots 73}{36\cdots 90}a^{14}+\frac{19\cdots 73}{36\cdots 90}a^{13}+\frac{13\cdots 89}{73\cdots 78}a^{12}-\frac{13\cdots 01}{36\cdots 90}a^{11}+\frac{13\cdots 67}{36\cdots 90}a^{10}-\frac{17\cdots 27}{36\cdots 90}a^{9}-\frac{22\cdots 19}{73\cdots 78}a^{8}-\frac{17\cdots 51}{36\cdots 90}a^{7}+\frac{12\cdots 27}{36\cdots 90}a^{6}+\frac{10\cdots 11}{36\cdots 90}a^{5}-\frac{11\cdots 79}{36\cdots 90}a^{4}-\frac{60\cdots 67}{36\cdots 90}a^{3}+\frac{11\cdots 57}{36\cdots 90}a^{2}+\frac{26\cdots 61}{73\cdots 78}a+\frac{76\cdots 66}{18\cdots 95}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{2}\times C_{4}$, which has order $32$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{4}$, which has order $32$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{85\cdots 82}{56\cdots 81}a^{15}+\frac{67\cdots 67}{28\cdots 05}a^{14}+\frac{25\cdots 16}{28\cdots 05}a^{13}+\frac{96\cdots 21}{28\cdots 05}a^{12}+\frac{12\cdots 73}{56\cdots 81}a^{11}-\frac{14\cdots 29}{28\cdots 05}a^{10}+\frac{26\cdots 74}{28\cdots 05}a^{9}+\frac{87\cdots 42}{28\cdots 05}a^{8}+\frac{67\cdots 62}{28\cdots 05}a^{7}-\frac{11\cdots 10}{56\cdots 81}a^{6}+\frac{32\cdots 02}{28\cdots 05}a^{5}+\frac{20\cdots 39}{28\cdots 05}a^{4}+\frac{24\cdots 87}{28\cdots 05}a^{3}+\frac{27\cdots 72}{28\cdots 05}a^{2}+\frac{28\cdots 99}{56\cdots 81}a+\frac{46\cdots 92}{28\cdots 05}$, $\frac{31\cdots 39}{59\cdots 41}a^{15}-\frac{99\cdots 87}{59\cdots 41}a^{14}+\frac{46\cdots 44}{29\cdots 05}a^{13}-\frac{16\cdots 44}{29\cdots 05}a^{12}+\frac{87\cdots 13}{29\cdots 05}a^{11}-\frac{66\cdots 72}{29\cdots 05}a^{10}+\frac{64\cdots 47}{59\cdots 41}a^{9}-\frac{73\cdots 17}{29\cdots 05}a^{8}+\frac{26\cdots 02}{29\cdots 05}a^{7}-\frac{35\cdots 29}{29\cdots 05}a^{6}+\frac{41\cdots 21}{29\cdots 05}a^{5}-\frac{17\cdots 38}{59\cdots 41}a^{4}-\frac{93\cdots 72}{29\cdots 05}a^{3}-\frac{16\cdots 93}{29\cdots 05}a^{2}-\frac{89\cdots 14}{29\cdots 05}a-\frac{19\cdots 04}{29\cdots 05}$, $\frac{27\cdots 91}{29\cdots 05}a^{15}-\frac{12\cdots 43}{29\cdots 05}a^{14}+\frac{59\cdots 92}{29\cdots 05}a^{13}-\frac{47\cdots 92}{59\cdots 41}a^{12}+\frac{10\cdots 57}{29\cdots 05}a^{11}-\frac{95\cdots 72}{29\cdots 05}a^{10}+\frac{65\cdots 09}{29\cdots 05}a^{9}-\frac{81\cdots 01}{29\cdots 05}a^{8}+\frac{63\cdots 98}{59\cdots 41}a^{7}+\frac{47\cdots 29}{29\cdots 05}a^{6}+\frac{85\cdots 99}{29\cdots 05}a^{5}-\frac{23\cdots 76}{29\cdots 05}a^{4}-\frac{26\cdots 76}{29\cdots 05}a^{3}-\frac{82\cdots 29}{59\cdots 41}a^{2}-\frac{22\cdots 96}{29\cdots 05}a-\frac{60\cdots 03}{29\cdots 05}$, $\frac{14\cdots 25}{36\cdots 39}a^{15}-\frac{21\cdots 69}{18\cdots 95}a^{14}+\frac{12\cdots 76}{18\cdots 95}a^{13}-\frac{16\cdots 65}{36\cdots 39}a^{12}+\frac{26\cdots 11}{18\cdots 95}a^{11}-\frac{13\cdots 96}{18\cdots 95}a^{10}+\frac{76\cdots 57}{18\cdots 95}a^{9}-\frac{43\cdots 98}{18\cdots 95}a^{8}+\frac{22\cdots 36}{36\cdots 39}a^{7}-\frac{13\cdots 03}{18\cdots 95}a^{6}-\frac{14\cdots 57}{18\cdots 95}a^{5}+\frac{28\cdots 02}{18\cdots 95}a^{4}-\frac{84\cdots 23}{18\cdots 95}a^{3}-\frac{35\cdots 52}{36\cdots 39}a^{2}-\frac{14\cdots 38}{18\cdots 95}a-\frac{14\cdots 42}{18\cdots 95}$, $\frac{18\cdots 82}{18\cdots 95}a^{15}-\frac{10\cdots 71}{18\cdots 95}a^{14}+\frac{84\cdots 41}{18\cdots 95}a^{13}-\frac{34\cdots 87}{18\cdots 95}a^{12}+\frac{18\cdots 93}{18\cdots 95}a^{11}-\frac{22\cdots 79}{36\cdots 39}a^{10}+\frac{67\cdots 03}{18\cdots 95}a^{9}-\frac{26\cdots 13}{18\cdots 95}a^{8}+\frac{10\cdots 21}{18\cdots 95}a^{7}-\frac{27\cdots 89}{18\cdots 95}a^{6}+\frac{11\cdots 46}{18\cdots 95}a^{5}-\frac{29\cdots 07}{18\cdots 95}a^{4}+\frac{81\cdots 57}{18\cdots 95}a^{3}-\frac{46\cdots 19}{18\cdots 95}a^{2}+\frac{75\cdots 81}{18\cdots 95}a-\frac{27\cdots 23}{18\cdots 95}$, $\frac{83\cdots 67}{73\cdots 78}a^{15}-\frac{88\cdots 22}{18\cdots 95}a^{14}+\frac{88\cdots 69}{18\cdots 95}a^{13}-\frac{32\cdots 58}{18\cdots 95}a^{12}+\frac{42\cdots 79}{36\cdots 39}a^{11}-\frac{23\cdots 20}{36\cdots 39}a^{10}+\frac{65\cdots 18}{18\cdots 95}a^{9}-\frac{43\cdots 56}{36\cdots 39}a^{8}+\frac{86\cdots 36}{18\cdots 95}a^{7}-\frac{16\cdots 48}{18\cdots 95}a^{6}+\frac{10\cdots 07}{18\cdots 95}a^{5}-\frac{14\cdots 08}{18\cdots 95}a^{4}+\frac{53\cdots 39}{18\cdots 95}a^{3}+\frac{13\cdots 31}{36\cdots 39}a^{2}+\frac{38\cdots 66}{18\cdots 95}a+\frac{14\cdots 87}{36\cdots 90}$, $\frac{23\cdots 89}{36\cdots 90}a^{15}-\frac{11\cdots 11}{36\cdots 90}a^{14}+\frac{10\cdots 69}{36\cdots 90}a^{13}-\frac{43\cdots 87}{36\cdots 90}a^{12}+\frac{27\cdots 09}{36\cdots 90}a^{11}-\frac{14\cdots 63}{36\cdots 90}a^{10}+\frac{16\cdots 45}{73\cdots 78}a^{9}-\frac{59\cdots 89}{73\cdots 78}a^{8}+\frac{12\cdots 43}{36\cdots 90}a^{7}-\frac{54\cdots 85}{73\cdots 78}a^{6}+\frac{13\cdots 03}{36\cdots 90}a^{5}-\frac{24\cdots 71}{36\cdots 90}a^{4}+\frac{84\cdots 09}{36\cdots 90}a^{3}+\frac{21\cdots 97}{36\cdots 90}a^{2}+\frac{74\cdots 99}{36\cdots 90}a+\frac{45\cdots 97}{18\cdots 95}$
|
| |
| Regulator: | \( 28292261.4648 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 28292261.4648 \cdot 32}{2\cdot\sqrt{16200860438828040517095947265625}}\cr\approx \mathstrut & 0.273185441961 \end{aligned}\] (assuming GRH)
Galois group
$C_2^3.D_4$ (as 16T153):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2^3.D_4$ |
| Character table for $C_2^3.D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.465125.1, 4.4.7625.1, 4.0.1525.1, 8.0.216341265625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.0.16200860438828040517095947265625.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{4}$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.1.8.7a1.1 | $x^{8} + 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $$[\ ]_{8}^{2}$$ |
| 5.1.8.7a1.1 | $x^{8} + 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $$[\ ]_{8}^{2}$$ | |
|
\(61\)
| 61.2.4.6a1.2 | $x^{8} + 240 x^{7} + 21608 x^{6} + 865440 x^{5} + 13046424 x^{4} + 1730880 x^{3} + 86432 x^{2} + 1920 x + 77$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
| 61.2.4.6a1.2 | $x^{8} + 240 x^{7} + 21608 x^{6} + 865440 x^{5} + 13046424 x^{4} + 1730880 x^{3} + 86432 x^{2} + 1920 x + 77$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |