Normalized defining polynomial
\( x^{16} - x^{15} + 47 x^{14} - 527 x^{13} + 680 x^{12} - 22632 x^{11} + 160488 x^{10} - 449724 x^{9} + \cdots + 669593281 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(1599229661124692101046354619853228081\)
\(\medspace = 37^{12}\cdot 149^{8}\)
|
| |
Root discriminant: | \(183.12\) |
| |
Galois root discriminant: | $37^{3/4}149^{3/4}\approx 639.7952248237154$ | ||
Ramified primes: |
\(37\), \(149\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_4$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | 8.0.56961692006209.2 |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{3}a^{9}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{9}a^{12}-\frac{1}{9}a^{11}-\frac{1}{9}a^{10}-\frac{1}{9}a^{9}-\frac{1}{9}a^{8}+\frac{4}{9}a^{7}+\frac{1}{9}a^{6}+\frac{1}{9}a^{5}+\frac{1}{3}a^{4}-\frac{2}{9}a^{3}-\frac{4}{9}a-\frac{4}{9}$, $\frac{1}{3339}a^{13}+\frac{118}{3339}a^{12}-\frac{10}{1113}a^{11}-\frac{38}{1113}a^{10}+\frac{39}{371}a^{9}-\frac{526}{3339}a^{8}-\frac{137}{371}a^{7}+\frac{221}{1113}a^{6}-\frac{883}{3339}a^{5}+\frac{1570}{3339}a^{4}-\frac{22}{3339}a^{3}+\frac{137}{3339}a^{2}-\frac{235}{1113}a-\frac{131}{477}$, $\frac{1}{1238769}a^{14}-\frac{169}{1238769}a^{13}+\frac{21383}{1238769}a^{12}-\frac{198151}{1238769}a^{11}+\frac{94655}{1238769}a^{10}-\frac{99779}{1238769}a^{9}-\frac{58031}{1238769}a^{8}-\frac{53195}{1238769}a^{7}+\frac{109783}{412923}a^{6}-\frac{597938}{1238769}a^{5}+\frac{19309}{137641}a^{4}+\frac{10532}{1238769}a^{3}-\frac{271528}{1238769}a^{2}-\frac{4906}{19663}a+\frac{3292}{8427}$, $\frac{1}{93\cdots 39}a^{15}-\frac{28\cdots 97}{31\cdots 13}a^{14}+\frac{13\cdots 26}{93\cdots 39}a^{13}-\frac{35\cdots 30}{93\cdots 39}a^{12}-\frac{13\cdots 24}{93\cdots 39}a^{11}-\frac{47\cdots 12}{10\cdots 71}a^{10}-\frac{21\cdots 22}{93\cdots 39}a^{9}-\frac{11\cdots 76}{93\cdots 39}a^{8}+\frac{39\cdots 59}{93\cdots 39}a^{7}+\frac{43\cdots 24}{93\cdots 39}a^{6}+\frac{45\cdots 01}{31\cdots 13}a^{5}-\frac{39\cdots 50}{31\cdots 13}a^{4}+\frac{15\cdots 18}{31\cdots 13}a^{3}-\frac{37\cdots 08}{13\cdots 77}a^{2}-\frac{15\cdots 13}{63\cdots 37}a-\frac{39\cdots 96}{27\cdots 73}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}\times C_{2}\times C_{24}$, which has order $96$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{2}\times C_{24}$, which has order $96$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{44\cdots 42}{55\cdots 83}a^{15}+\frac{23\cdots 81}{61\cdots 87}a^{14}+\frac{21\cdots 64}{55\cdots 83}a^{13}-\frac{28\cdots 10}{78\cdots 69}a^{12}-\frac{55\cdots 52}{55\cdots 83}a^{11}-\frac{33\cdots 94}{18\cdots 61}a^{10}+\frac{80\cdots 76}{78\cdots 69}a^{9}-\frac{11\cdots 63}{55\cdots 83}a^{8}+\frac{19\cdots 18}{55\cdots 83}a^{7}-\frac{86\cdots 54}{55\cdots 83}a^{6}+\frac{59\cdots 39}{61\cdots 87}a^{5}+\frac{10\cdots 35}{61\cdots 87}a^{4}+\frac{34\cdots 08}{18\cdots 61}a^{3}-\frac{40\cdots 85}{55\cdots 83}a^{2}+\frac{74\cdots 31}{87\cdots 41}a-\frac{34\cdots 18}{11\cdots 67}$, $\frac{26\cdots 16}{26\cdots 97}a^{15}+\frac{42\cdots 58}{86\cdots 99}a^{14}+\frac{14\cdots 74}{28\cdots 33}a^{13}-\frac{40\cdots 00}{86\cdots 99}a^{12}-\frac{29\cdots 88}{26\cdots 97}a^{11}-\frac{20\cdots 26}{86\cdots 99}a^{10}+\frac{34\cdots 32}{26\cdots 97}a^{9}-\frac{22\cdots 20}{86\cdots 99}a^{8}+\frac{11\cdots 80}{26\cdots 97}a^{7}-\frac{52\cdots 10}{26\cdots 97}a^{6}+\frac{30\cdots 28}{26\cdots 97}a^{5}+\frac{62\cdots 44}{26\cdots 97}a^{4}+\frac{61\cdots 08}{26\cdots 97}a^{3}-\frac{11\cdots 34}{12\cdots 57}a^{2}+\frac{19\cdots 36}{17\cdots 51}a-\frac{22\cdots 39}{75\cdots 79}$, $\frac{36\cdots 05}{38\cdots 81}a^{15}+\frac{16\cdots 46}{38\cdots 81}a^{14}+\frac{17\cdots 52}{38\cdots 81}a^{13}-\frac{16\cdots 32}{38\cdots 81}a^{12}-\frac{16\cdots 90}{42\cdots 09}a^{11}-\frac{82\cdots 19}{38\cdots 81}a^{10}+\frac{46\cdots 99}{38\cdots 81}a^{9}-\frac{93\cdots 87}{38\cdots 81}a^{8}+\frac{15\cdots 58}{38\cdots 81}a^{7}-\frac{23\cdots 10}{12\cdots 27}a^{6}+\frac{43\cdots 10}{38\cdots 81}a^{5}+\frac{80\cdots 95}{38\cdots 81}a^{4}+\frac{84\cdots 61}{38\cdots 81}a^{3}-\frac{15\cdots 49}{18\cdots 61}a^{2}+\frac{78\cdots 87}{78\cdots 69}a-\frac{45\cdots 86}{11\cdots 67}$, $\frac{11\cdots 23}{93\cdots 39}a^{15}+\frac{18\cdots 22}{93\cdots 39}a^{14}+\frac{58\cdots 01}{93\cdots 39}a^{13}-\frac{45\cdots 26}{93\cdots 39}a^{12}-\frac{13\cdots 63}{31\cdots 13}a^{11}-\frac{27\cdots 64}{93\cdots 39}a^{10}+\frac{11\cdots 56}{93\cdots 39}a^{9}-\frac{21\cdots 37}{93\cdots 39}a^{8}+\frac{49\cdots 94}{93\cdots 39}a^{7}-\frac{56\cdots 93}{31\cdots 13}a^{6}+\frac{30\cdots 23}{93\cdots 39}a^{5}+\frac{83\cdots 99}{93\cdots 39}a^{4}+\frac{25\cdots 76}{93\cdots 39}a^{3}-\frac{36\cdots 53}{44\cdots 59}a^{2}+\frac{16\cdots 57}{19\cdots 11}a-\frac{84\cdots 91}{27\cdots 73}$, $\frac{28\cdots 18}{31\cdots 13}a^{15}-\frac{26\cdots 42}{93\cdots 39}a^{14}+\frac{38\cdots 12}{93\cdots 39}a^{13}-\frac{43\cdots 69}{93\cdots 39}a^{12}+\frac{16\cdots 87}{93\cdots 39}a^{11}-\frac{18\cdots 83}{93\cdots 39}a^{10}+\frac{12\cdots 23}{93\cdots 39}a^{9}-\frac{24\cdots 73}{93\cdots 39}a^{8}+\frac{37\cdots 81}{93\cdots 39}a^{7}-\frac{66\cdots 42}{31\cdots 13}a^{6}+\frac{13\cdots 29}{93\cdots 39}a^{5}+\frac{11\cdots 51}{31\cdots 13}a^{4}+\frac{23\cdots 27}{93\cdots 39}a^{3}-\frac{13\cdots 48}{13\cdots 77}a^{2}+\frac{10\cdots 33}{90\cdots 91}a-\frac{39\cdots 12}{90\cdots 91}$, $\frac{85\cdots 78}{93\cdots 39}a^{15}+\frac{20\cdots 74}{93\cdots 39}a^{14}+\frac{45\cdots 14}{93\cdots 39}a^{13}-\frac{98\cdots 95}{31\cdots 13}a^{12}-\frac{58\cdots 86}{10\cdots 71}a^{11}-\frac{20\cdots 76}{93\cdots 39}a^{10}+\frac{66\cdots 11}{93\cdots 39}a^{9}-\frac{12\cdots 44}{10\cdots 71}a^{8}+\frac{35\cdots 31}{93\cdots 39}a^{7}-\frac{32\cdots 68}{31\cdots 13}a^{6}-\frac{14\cdots 77}{31\cdots 13}a^{5}+\frac{72\cdots 84}{93\cdots 39}a^{4}+\frac{18\cdots 73}{93\cdots 39}a^{3}-\frac{61\cdots 85}{13\cdots 77}a^{2}+\frac{89\cdots 86}{27\cdots 73}a-\frac{54\cdots 94}{90\cdots 91}$, $\frac{38\cdots 69}{93\cdots 39}a^{15}+\frac{59\cdots 38}{93\cdots 39}a^{14}+\frac{65\cdots 74}{31\cdots 13}a^{13}-\frac{15\cdots 76}{93\cdots 39}a^{12}-\frac{12\cdots 68}{93\cdots 39}a^{11}-\frac{90\cdots 01}{93\cdots 39}a^{10}+\frac{38\cdots 24}{93\cdots 39}a^{9}-\frac{74\cdots 00}{93\cdots 39}a^{8}+\frac{54\cdots 71}{31\cdots 13}a^{7}-\frac{58\cdots 78}{93\cdots 39}a^{6}+\frac{38\cdots 91}{31\cdots 13}a^{5}+\frac{30\cdots 92}{93\cdots 39}a^{4}+\frac{84\cdots 19}{93\cdots 39}a^{3}-\frac{37\cdots 53}{13\cdots 77}a^{2}+\frac{57\cdots 68}{19\cdots 11}a-\frac{29\cdots 97}{27\cdots 73}$
|
| |
Regulator: | \( 2477297760.12 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 2477297760.12 \cdot 96}{2\cdot\sqrt{1599229661124692101046354619853228081}}\cr\approx \mathstrut & 0.228403616502 \end{aligned}\] (assuming GRH)
Galois group
$C_2^3.D_4$ (as 16T153):
A solvable group of order 64 |
The 13 conjugacy class representatives for $C_2^3.D_4$ |
Character table for $C_2^3.D_4$ |
Intermediate fields
\(\Q(\sqrt{37}) \), 4.4.203981.1, 4.0.50653.1, 4.0.7547297.1, 8.0.56961692006209.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.0.35504497706629289335330118915361516626281.45 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.2.0.1}{2} }^{8}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.1.0.1}{1} }^{16}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(37\)
| 37.2.4.6a1.2 | $x^{8} + 132 x^{7} + 6542 x^{6} + 144540 x^{5} + 1212081 x^{4} + 289080 x^{3} + 26168 x^{2} + 1056 x + 53$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
37.2.4.6a1.2 | $x^{8} + 132 x^{7} + 6542 x^{6} + 144540 x^{5} + 1212081 x^{4} + 289080 x^{3} + 26168 x^{2} + 1056 x + 53$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
\(149\)
| $\Q_{149}$ | $x + 147$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{149}$ | $x + 147$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{149}$ | $x + 147$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{149}$ | $x + 147$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
149.1.2.1a1.1 | $x^{2} + 149$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
149.1.2.1a1.1 | $x^{2} + 149$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
149.1.4.3a1.1 | $x^{4} + 149$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
149.1.4.3a1.1 | $x^{4} + 149$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |