Normalized defining polynomial
\( x^{16} - x^{15} - 21 x^{14} + 279 x^{13} - 1802 x^{12} - 13059 x^{11} + 276033 x^{10} + \cdots + 1550616680000 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(148534373731547764810930925932451123761\)
\(\medspace = 37^{12}\cdot 41^{12}\)
|
| |
Root discriminant: | \(243.07\) |
| |
Galois root discriminant: | $37^{3/4}41^{3/4}\approx 243.0743793855133$ | ||
Ramified primes: |
\(37\), \(41\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_4$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | 8.0.8902460114416801.2 |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{10}a^{12}-\frac{3}{10}a^{11}+\frac{1}{5}a^{10}+\frac{2}{5}a^{9}+\frac{2}{5}a^{8}+\frac{1}{10}a^{7}-\frac{1}{10}a^{6}+\frac{2}{5}a^{5}-\frac{2}{5}a^{4}+\frac{2}{5}a^{3}-\frac{1}{2}a^{2}-\frac{3}{10}a$, $\frac{1}{10}a^{13}+\frac{3}{10}a^{11}-\frac{2}{5}a^{9}+\frac{3}{10}a^{8}+\frac{1}{5}a^{7}+\frac{1}{10}a^{6}-\frac{1}{5}a^{5}+\frac{1}{5}a^{4}-\frac{3}{10}a^{3}+\frac{1}{5}a^{2}+\frac{1}{10}a$, $\frac{1}{180}a^{14}-\frac{2}{45}a^{13}+\frac{1}{60}a^{12}+\frac{23}{90}a^{11}-\frac{2}{15}a^{10}-\frac{7}{36}a^{9}-\frac{41}{90}a^{8}-\frac{11}{36}a^{7}-\frac{1}{6}a^{6}-\frac{13}{45}a^{5}-\frac{79}{180}a^{4}-\frac{1}{45}a^{3}-\frac{13}{36}a^{2}-\frac{4}{15}a+\frac{2}{9}$, $\frac{1}{21\cdots 00}a^{15}+\frac{19\cdots 23}{72\cdots 00}a^{14}-\frac{47\cdots 31}{21\cdots 00}a^{13}-\frac{39\cdots 51}{21\cdots 00}a^{12}-\frac{20\cdots 03}{54\cdots 50}a^{11}-\frac{82\cdots 19}{21\cdots 00}a^{10}-\frac{30\cdots 77}{21\cdots 00}a^{9}-\frac{58\cdots 85}{29\cdots 84}a^{8}-\frac{10\cdots 89}{21\cdots 00}a^{7}-\frac{59\cdots 34}{44\cdots 75}a^{6}+\frac{33\cdots 07}{72\cdots 00}a^{5}-\frac{64\cdots 59}{24\cdots 00}a^{4}-\frac{92\cdots 11}{21\cdots 00}a^{3}+\frac{65\cdots 71}{21\cdots 00}a^{2}+\frac{10\cdots 63}{21\cdots 80}a+\frac{19\cdots 17}{10\cdots 19}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Ideal class group: | $C_{2}\times C_{96}$, which has order $192$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{96}$, which has order $192$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{34\cdots 60}{21\cdots 71}a^{15}-\frac{19\cdots 60}{21\cdots 71}a^{14}-\frac{43\cdots 00}{21\cdots 71}a^{13}+\frac{15\cdots 50}{21\cdots 71}a^{12}-\frac{13\cdots 80}{21\cdots 71}a^{11}+\frac{72\cdots 60}{21\cdots 71}a^{10}+\frac{11\cdots 90}{21\cdots 71}a^{9}-\frac{99\cdots 60}{21\cdots 71}a^{8}-\frac{54\cdots 40}{21\cdots 71}a^{7}-\frac{87\cdots 50}{21\cdots 71}a^{6}+\frac{22\cdots 00}{21\cdots 71}a^{5}+\frac{55\cdots 60}{21\cdots 71}a^{4}-\frac{53\cdots 30}{21\cdots 71}a^{3}-\frac{12\cdots 00}{21\cdots 71}a^{2}+\frac{60\cdots 00}{21\cdots 71}a+\frac{17\cdots 17}{21\cdots 71}$, $\frac{72\cdots 67}{90\cdots 50}a^{15}-\frac{45\cdots 77}{15\cdots 75}a^{14}-\frac{79\cdots 07}{90\cdots 50}a^{13}+\frac{11\cdots 34}{45\cdots 25}a^{12}-\frac{98\cdots 32}{45\cdots 25}a^{11}-\frac{39\cdots 53}{90\cdots 50}a^{10}+\frac{10\cdots 08}{45\cdots 25}a^{9}+\frac{70\cdots 53}{12\cdots 78}a^{8}-\frac{50\cdots 34}{45\cdots 25}a^{7}-\frac{32\cdots 12}{73\cdots 25}a^{6}+\frac{12\cdots 69}{30\cdots 50}a^{5}+\frac{32\cdots 93}{15\cdots 75}a^{4}-\frac{69\cdots 07}{90\cdots 50}a^{3}-\frac{21\cdots 69}{45\cdots 25}a^{2}+\frac{52\cdots 36}{90\cdots 85}a+\frac{70\cdots 73}{18\cdots 17}$, $\frac{34\cdots 49}{54\cdots 50}a^{15}+\frac{18\cdots 09}{36\cdots 00}a^{14}+\frac{11\cdots 81}{54\cdots 50}a^{13}+\frac{23\cdots 27}{10\cdots 00}a^{12}+\frac{40\cdots 21}{27\cdots 75}a^{11}-\frac{75\cdots 31}{54\cdots 50}a^{10}+\frac{22\cdots 19}{10\cdots 00}a^{9}+\frac{53\cdots 62}{36\cdots 73}a^{8}+\frac{66\cdots 73}{10\cdots 00}a^{7}-\frac{16\cdots 54}{44\cdots 75}a^{6}-\frac{58\cdots 07}{18\cdots 50}a^{5}-\frac{83\cdots 17}{12\cdots 00}a^{4}+\frac{27\cdots 61}{54\cdots 50}a^{3}+\frac{10\cdots 23}{10\cdots 00}a^{2}-\frac{51\cdots 63}{21\cdots 38}a-\frac{71\cdots 79}{10\cdots 19}$, $\frac{85\cdots 93}{60\cdots 50}a^{15}-\frac{17\cdots 97}{54\cdots 50}a^{14}-\frac{18\cdots 71}{27\cdots 75}a^{13}+\frac{14\cdots 38}{91\cdots 25}a^{12}-\frac{10\cdots 37}{27\cdots 75}a^{11}-\frac{52\cdots 41}{18\cdots 50}a^{10}+\frac{21\cdots 91}{54\cdots 50}a^{9}+\frac{25\cdots 61}{10\cdots 19}a^{8}-\frac{70\cdots 84}{27\cdots 75}a^{7}-\frac{35\cdots 54}{14\cdots 25}a^{6}+\frac{13\cdots 77}{54\cdots 50}a^{5}+\frac{42\cdots 53}{54\cdots 50}a^{4}+\frac{69\cdots 44}{27\cdots 75}a^{3}-\frac{61\cdots 19}{27\cdots 75}a^{2}-\frac{16\cdots 21}{18\cdots 65}a-\frac{12\cdots 71}{10\cdots 19}$, $\frac{63\cdots 19}{21\cdots 80}a^{15}-\frac{12\cdots 09}{72\cdots 46}a^{14}+\frac{42\cdots 31}{21\cdots 80}a^{13}+\frac{82\cdots 91}{10\cdots 90}a^{12}-\frac{10\cdots 47}{10\cdots 19}a^{11}+\frac{17\cdots 31}{21\cdots 80}a^{10}+\frac{84\cdots 87}{10\cdots 19}a^{9}+\frac{56\cdots 43}{72\cdots 60}a^{8}-\frac{41\cdots 09}{10\cdots 90}a^{7}-\frac{15\cdots 80}{17\cdots 79}a^{6}+\frac{10\cdots 61}{72\cdots 60}a^{5}+\frac{59\cdots 81}{12\cdots 10}a^{4}-\frac{12\cdots 01}{43\cdots 76}a^{3}-\frac{58\cdots 63}{54\cdots 95}a^{2}+\frac{11\cdots 22}{54\cdots 95}a+\frac{96\cdots 49}{10\cdots 19}$, $\frac{33\cdots 03}{36\cdots 00}a^{15}+\frac{48\cdots 49}{27\cdots 75}a^{14}-\frac{19\cdots 59}{10\cdots 00}a^{13}+\frac{19\cdots 16}{30\cdots 75}a^{12}+\frac{12\cdots 93}{27\cdots 75}a^{11}-\frac{12\cdots 39}{12\cdots 00}a^{10}+\frac{32\cdots 21}{54\cdots 50}a^{9}+\frac{26\cdots 87}{43\cdots 76}a^{8}-\frac{66\cdots 19}{27\cdots 75}a^{7}-\frac{15\cdots 58}{49\cdots 75}a^{6}+\frac{51\cdots 89}{10\cdots 00}a^{5}+\frac{38\cdots 74}{27\cdots 75}a^{4}-\frac{64\cdots 19}{10\cdots 00}a^{3}-\frac{17\cdots 73}{54\cdots 50}a^{2}+\frac{12\cdots 01}{18\cdots 65}a+\frac{25\cdots 53}{10\cdots 19}$, $\frac{15\cdots 23}{60\cdots 50}a^{15}+\frac{11\cdots 51}{10\cdots 00}a^{14}-\frac{19\cdots 67}{54\cdots 50}a^{13}+\frac{24\cdots 57}{36\cdots 00}a^{12}-\frac{34\cdots 52}{27\cdots 75}a^{11}-\frac{74\cdots 41}{18\cdots 50}a^{10}+\frac{54\cdots 47}{10\cdots 00}a^{9}+\frac{36\cdots 92}{54\cdots 95}a^{8}+\frac{37\cdots 69}{10\cdots 00}a^{7}-\frac{35\cdots 84}{14\cdots 25}a^{6}-\frac{21\cdots 33}{54\cdots 50}a^{5}+\frac{95\cdots 91}{10\cdots 00}a^{4}+\frac{22\cdots 93}{54\cdots 50}a^{3}-\frac{17\cdots 21}{10\cdots 00}a^{2}-\frac{16\cdots 09}{36\cdots 30}a-\frac{80\cdots 63}{10\cdots 19}$
|
| |
Regulator: | \( 592324580865 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 592324580865 \cdot 192}{2\cdot\sqrt{148534373731547764810930925932451123761}}\cr\approx \mathstrut & 11.3333017221292 \end{aligned}\] (assuming GRH)
Galois group
$C_2^3.D_4$ (as 16T153):
A solvable group of order 64 |
The 13 conjugacy class representatives for $C_2^3.D_4$ |
Character table for $C_2^3.D_4$ |
Intermediate fields
\(\Q(\sqrt{41}) \), 4.4.94352849.1, 4.0.62197.1, 4.0.2550077.1, 8.0.8902460114416801.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.8.148534373731547764810930925932451123761.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{2}{,}\,{\href{/padicField/2.2.0.1}{2} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }^{4}$ | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | R | R | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(37\)
| 37.2.4.6a1.2 | $x^{8} + 132 x^{7} + 6542 x^{6} + 144540 x^{5} + 1212081 x^{4} + 289080 x^{3} + 26168 x^{2} + 1056 x + 53$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
37.2.4.6a1.2 | $x^{8} + 132 x^{7} + 6542 x^{6} + 144540 x^{5} + 1212081 x^{4} + 289080 x^{3} + 26168 x^{2} + 1056 x + 53$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
\(41\)
| 41.2.4.6a1.2 | $x^{8} + 152 x^{7} + 8688 x^{6} + 222224 x^{5} + 2189320 x^{4} + 1333344 x^{3} + 312768 x^{2} + 32832 x + 1337$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
41.2.4.6a1.2 | $x^{8} + 152 x^{7} + 8688 x^{6} + 222224 x^{5} + 2189320 x^{4} + 1333344 x^{3} + 312768 x^{2} + 32832 x + 1337$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |