# Properties

 Label 16.0.14012498575360000.1 Degree $16$ Signature $[0, 8]$ Discriminant $1.401\times 10^{16}$ Root discriminant $10.21$ Ramified primes $2, 5, 17$ Class number $1$ Class group trivial Galois group $D_4^2.C_2$ (as 16T388)

# Related objects

Show commands: SageMath / Pari/GP / Magma

## Normalizeddefining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 6*x^13 - 10*x^12 + 6*x^11 + 12*x^10 - 34*x^9 + 46*x^8 - 34*x^7 + 12*x^6 + 6*x^5 - 10*x^4 + 6*x^3 - 2*x + 1)

gp: K = bnfinit(x^16 - 2*x^15 + 6*x^13 - 10*x^12 + 6*x^11 + 12*x^10 - 34*x^9 + 46*x^8 - 34*x^7 + 12*x^6 + 6*x^5 - 10*x^4 + 6*x^3 - 2*x + 1, 1)

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, 0, 6, -10, 6, 12, -34, 46, -34, 12, 6, -10, 6, 0, -2, 1]);

$$x^{16} - 2 x^{15} + 6 x^{13} - 10 x^{12} + 6 x^{11} + 12 x^{10} - 34 x^{9} + 46 x^{8} - 34 x^{7} + 12 x^{6} + 6 x^{5} - 10 x^{4} + 6 x^{3} - 2 x + 1$$

sage: K.defining_polynomial()

gp: K.pol

magma: DefiningPolynomial(K);

## Invariants

 Degree: $16$ sage: K.degree()  gp: poldegree(K.pol)  magma: Degree(K); Signature: $[0, 8]$ sage: K.signature()  gp: K.sign  magma: Signature(K); Discriminant: $$14012498575360000$$$$\medspace = 2^{28}\cdot 5^{4}\cdot 17^{4}$$ sage: K.disc()  gp: K.disc  magma: Discriminant(Integers(K)); Root discriminant: $10.21$ sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol))  magma: Abs(Discriminant(Integers(K)))^(1/Degree(K)); Ramified primes: $2, 5, 17$ sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~  magma: PrimeDivisors(Discriminant(Integers(K))); $|\Aut(K/\Q)|$: $8$ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{10} a^{14} + \frac{1}{10} a^{13} + \frac{1}{5} a^{12} + \frac{1}{10} a^{11} + \frac{1}{10} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{7} - \frac{1}{2} a^{6} + \frac{3}{10} a^{5} - \frac{2}{5} a^{4} + \frac{1}{10} a^{3} - \frac{3}{10} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{15} + \frac{1}{10} a^{13} - \frac{1}{10} a^{12} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{3}{10} a^{7} - \frac{1}{5} a^{6} + \frac{3}{10} a^{5} - \frac{1}{2} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5}$

sage: K.integral_basis()

gp: K.zk

magma: IntegralBasis(K);

## Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()

gp: K.clgp

magma: ClassGroup(K);

## Unit group

sage: UK = K.unit_group()

magma: UK, f := UnitGroup(K);

 Rank: $7$ sage: UK.rank()  gp: K.fu  magma: UnitRank(K); Torsion generator: $$\frac{1}{2} a^{15} + \frac{5}{2} a^{14} - \frac{7}{2} a^{13} - 3 a^{12} + \frac{23}{2} a^{11} - \frac{21}{2} a^{10} + \frac{7}{2} a^{9} + 28 a^{8} - \frac{93}{2} a^{7} + \frac{87}{2} a^{6} - \frac{29}{2} a^{5} - 3 a^{4} + \frac{21}{2} a^{3} - \frac{15}{2} a^{2} - \frac{3}{2} a + 3$$ (order $4$) sage: UK.torsion_generator()  gp: K.tu[2]  magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); Fundamental units: Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right sage: UK.fundamental_units()  gp: K.fu  magma: [K!f(g): g in Generators(UK)]; Regulator: $$41.4539267385$$ sage: K.regulator()  gp: K.reg  magma: Regulator(K);

## Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{0}\cdot(2\pi)^{8}\cdot 41.4539267385 \cdot 1}{4\sqrt{14012498575360000}}\approx 0.212660504756$

## Galois group

$D_4^2.C_2$ (as 16T388):

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

magma: GaloisGroup(K);

 A solvable group of order 128 The 20 conjugacy class representatives for $D_4^2.C_2$ Character table for $D_4^2.C_2$

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Sibling fields

 Degree 8 siblings: data not computed Degree 16 siblings: data not computed Degree 32 siblings: data not computed

## Frobenius cycle types

 $p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$ Cycle type R ${\href{/padicField/3.8.0.1}{8} }^{2}$ R ${\href{/padicField/7.8.0.1}{8} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ R ${\href{/padicField/19.4.0.1}{4} }^{4}$ ${\href{/padicField/23.8.0.1}{8} }^{2}$ ${\href{/padicField/29.2.0.1}{2} }^{8}$ ${\href{/padicField/31.4.0.1}{4} }^{4}$ ${\href{/padicField/37.2.0.1}{2} }^{8}$ ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{4}$ ${\href{/padicField/53.2.0.1}{2} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$Data not computed
$5$5.4.0.1$x^{4} + x^{2} - 2 x + 2$$1$$4$$0$$C_4$$[\ ]^{4} 5.4.2.1x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2} 5.4.0.1x^{4} + x^{2} - 2 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
$17$17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2} 17.2.0.1x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2} 17.2.0.1x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2} 17.4.2.1x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$