Properties

Label 16.0.107...801.1
Degree $16$
Signature $[0, 8]$
Discriminant $1.077\times 10^{30}$
Root discriminant \(75.34\)
Ramified primes $41,73$
Class number $33$ (GRH)
Class group [33] (GRH)
Galois group $C_2^2 : C_8$ (as 16T24)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 + 20*x^14 - 53*x^13 + 425*x^12 - 1761*x^11 + 8234*x^10 - 26439*x^9 + 85127*x^8 - 227294*x^7 + 576600*x^6 - 1117344*x^5 + 2015984*x^4 - 2860288*x^3 + 4678656*x^2 - 5948416*x + 5607424)
 
Copy content gp:K = bnfinit(y^16 - 5*y^15 + 20*y^14 - 53*y^13 + 425*y^12 - 1761*y^11 + 8234*y^10 - 26439*y^9 + 85127*y^8 - 227294*y^7 + 576600*y^6 - 1117344*y^5 + 2015984*y^4 - 2860288*y^3 + 4678656*y^2 - 5948416*y + 5607424, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 5*x^15 + 20*x^14 - 53*x^13 + 425*x^12 - 1761*x^11 + 8234*x^10 - 26439*x^9 + 85127*x^8 - 227294*x^7 + 576600*x^6 - 1117344*x^5 + 2015984*x^4 - 2860288*x^3 + 4678656*x^2 - 5948416*x + 5607424);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 5*x^15 + 20*x^14 - 53*x^13 + 425*x^12 - 1761*x^11 + 8234*x^10 - 26439*x^9 + 85127*x^8 - 227294*x^7 + 576600*x^6 - 1117344*x^5 + 2015984*x^4 - 2860288*x^3 + 4678656*x^2 - 5948416*x + 5607424)
 

\( x^{16} - 5 x^{15} + 20 x^{14} - 53 x^{13} + 425 x^{12} - 1761 x^{11} + 8234 x^{10} - 26439 x^{9} + \cdots + 5607424 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(1077123334824966013513439398801\) \(\medspace = 41^{14}\cdot 73^{4}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(75.34\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $41^{7/8}73^{1/2}\approx 220.21520635937404$
Ramified primes:   \(41\), \(73\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2\times C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}+\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{11}-\frac{1}{8}a^{10}+\frac{3}{8}a^{8}-\frac{3}{8}a^{7}+\frac{3}{8}a^{6}-\frac{1}{4}a^{5}+\frac{1}{8}a^{4}+\frac{3}{8}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{16}a^{12}-\frac{1}{16}a^{11}+\frac{3}{16}a^{9}-\frac{3}{16}a^{8}+\frac{3}{16}a^{7}-\frac{1}{8}a^{6}-\frac{7}{16}a^{5}+\frac{3}{16}a^{4}-\frac{1}{8}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{64}a^{13}-\frac{1}{64}a^{12}-\frac{5}{64}a^{10}-\frac{11}{64}a^{9}+\frac{3}{64}a^{8}+\frac{3}{32}a^{7}+\frac{1}{64}a^{6}+\frac{11}{64}a^{5}-\frac{1}{32}a^{4}-\frac{1}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{468224}a^{14}-\frac{673}{468224}a^{13}-\frac{167}{14632}a^{12}+\frac{197}{15104}a^{11}+\frac{17077}{468224}a^{10}+\frac{24099}{468224}a^{9}+\frac{15491}{234112}a^{8}-\frac{199583}{468224}a^{7}+\frac{96395}{468224}a^{6}+\frac{116911}{234112}a^{5}+\frac{6463}{14632}a^{4}-\frac{655}{3658}a^{3}-\frac{5793}{29264}a^{2}+\frac{2559}{7316}a+\frac{564}{1829}$, $\frac{1}{14\cdots 28}a^{15}-\frac{77\cdots 77}{14\cdots 28}a^{14}+\frac{59\cdots 97}{37\cdots 32}a^{13}-\frac{53\cdots 17}{14\cdots 28}a^{12}+\frac{86\cdots 45}{14\cdots 28}a^{11}+\frac{15\cdots 43}{14\cdots 28}a^{10}-\frac{13\cdots 99}{74\cdots 64}a^{9}-\frac{15\cdots 91}{14\cdots 28}a^{8}+\frac{63\cdots 15}{14\cdots 28}a^{7}+\frac{76\cdots 85}{74\cdots 64}a^{6}+\frac{16\cdots 37}{18\cdots 16}a^{5}+\frac{91\cdots 89}{23\cdots 52}a^{4}+\frac{12\cdots 51}{92\cdots 08}a^{3}+\frac{99\cdots 93}{58\cdots 88}a^{2}-\frac{21\cdots 79}{58\cdots 88}a+\frac{47\cdots 60}{39\cdots 31}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  $C_{33}$, which has order $33$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{33}$, which has order $33$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 
Relative class number:   $33$ (assuming GRH)

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $7$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{78\cdots 87}{35\cdots 52}a^{15}-\frac{70\cdots 01}{35\cdots 52}a^{14}+\frac{12\cdots 17}{17\cdots 76}a^{13}-\frac{57\cdots 51}{35\cdots 52}a^{12}+\frac{30\cdots 85}{35\cdots 52}a^{11}-\frac{22\cdots 61}{35\cdots 52}a^{10}+\frac{23\cdots 43}{89\cdots 88}a^{9}-\frac{31\cdots 01}{35\cdots 52}a^{8}+\frac{77\cdots 31}{35\cdots 52}a^{7}-\frac{56\cdots 03}{89\cdots 88}a^{6}+\frac{12\cdots 69}{89\cdots 88}a^{5}-\frac{30\cdots 71}{11\cdots 36}a^{4}+\frac{76\cdots 57}{22\cdots 72}a^{3}-\frac{22\cdots 43}{36\cdots 56}a^{2}+\frac{25\cdots 21}{28\cdots 84}a-\frac{86\cdots 28}{70\cdots 71}$, $\frac{68\cdots 63}{17\cdots 76}a^{15}-\frac{36\cdots 81}{17\cdots 76}a^{14}+\frac{56\cdots 57}{89\cdots 88}a^{13}-\frac{28\cdots 79}{17\cdots 76}a^{12}+\frac{24\cdots 05}{17\cdots 76}a^{11}-\frac{11\cdots 61}{17\cdots 76}a^{10}+\frac{11\cdots 35}{44\cdots 44}a^{9}-\frac{15\cdots 61}{17\cdots 76}a^{8}+\frac{41\cdots 63}{17\cdots 76}a^{7}-\frac{29\cdots 67}{44\cdots 44}a^{6}+\frac{64\cdots 47}{44\cdots 44}a^{5}-\frac{15\cdots 29}{56\cdots 68}a^{4}+\frac{39\cdots 17}{11\cdots 36}a^{3}-\frac{11\cdots 19}{18\cdots 28}a^{2}+\frac{12\cdots 33}{14\cdots 42}a-\frac{16\cdots 17}{70\cdots 71}$, $\frac{37\cdots 87}{35\cdots 52}a^{15}-\frac{28\cdots 65}{35\cdots 52}a^{14}+\frac{49\cdots 65}{17\cdots 76}a^{13}-\frac{22\cdots 11}{35\cdots 52}a^{12}+\frac{14\cdots 65}{35\cdots 52}a^{11}-\frac{92\cdots 05}{35\cdots 52}a^{10}+\frac{94\cdots 99}{89\cdots 88}a^{9}-\frac{12\cdots 25}{35\cdots 52}a^{8}+\frac{31\cdots 19}{35\cdots 52}a^{7}-\frac{22\cdots 43}{89\cdots 88}a^{6}+\frac{50\cdots 01}{89\cdots 88}a^{5}-\frac{12\cdots 71}{11\cdots 36}a^{4}+\frac{30\cdots 05}{22\cdots 72}a^{3}-\frac{89\cdots 67}{36\cdots 56}a^{2}+\frac{10\cdots 29}{28\cdots 84}a-\frac{56\cdots 43}{70\cdots 71}$, $\frac{28\cdots 65}{74\cdots 64}a^{15}-\frac{55\cdots 63}{74\cdots 64}a^{14}+\frac{95\cdots 75}{37\cdots 32}a^{13}-\frac{50\cdots 37}{74\cdots 64}a^{12}+\frac{11\cdots 91}{74\cdots 64}a^{11}-\frac{18\cdots 19}{74\cdots 64}a^{10}+\frac{15\cdots 11}{18\cdots 16}a^{9}-\frac{25\cdots 95}{74\cdots 64}a^{8}+\frac{73\cdots 21}{74\cdots 64}a^{7}-\frac{52\cdots 75}{18\cdots 16}a^{6}+\frac{12\cdots 37}{18\cdots 16}a^{5}-\frac{71\cdots 93}{46\cdots 04}a^{4}+\frac{79\cdots 91}{46\cdots 04}a^{3}-\frac{60\cdots 95}{23\cdots 52}a^{2}+\frac{67\cdots 98}{14\cdots 47}a-\frac{26\cdots 23}{39\cdots 31}$, $\frac{40\cdots 01}{74\cdots 64}a^{15}+\frac{54\cdots 19}{74\cdots 64}a^{14}-\frac{11\cdots 65}{46\cdots 04}a^{13}+\frac{48\cdots 71}{74\cdots 64}a^{12}-\frac{93\cdots 15}{74\cdots 64}a^{11}+\frac{18\cdots 91}{74\cdots 64}a^{10}-\frac{27\cdots 61}{37\cdots 32}a^{9}+\frac{24\cdots 05}{74\cdots 64}a^{8}-\frac{68\cdots 05}{74\cdots 64}a^{7}+\frac{10\cdots 87}{37\cdots 32}a^{6}-\frac{58\cdots 81}{92\cdots 08}a^{5}+\frac{66\cdots 49}{46\cdots 04}a^{4}-\frac{73\cdots 77}{46\cdots 04}a^{3}+\frac{28\cdots 03}{11\cdots 76}a^{2}-\frac{24\cdots 65}{58\cdots 88}a+\frac{24\cdots 97}{39\cdots 31}$, $\frac{21\cdots 31}{74\cdots 64}a^{15}-\frac{41\cdots 69}{74\cdots 64}a^{14}+\frac{65\cdots 71}{37\cdots 32}a^{13}-\frac{38\cdots 79}{74\cdots 64}a^{12}+\frac{10\cdots 29}{74\cdots 64}a^{11}-\frac{12\cdots 53}{74\cdots 64}a^{10}+\frac{52\cdots 87}{92\cdots 08}a^{9}-\frac{18\cdots 49}{74\cdots 64}a^{8}+\frac{41\cdots 15}{74\cdots 64}a^{7}-\frac{64\cdots 23}{46\cdots 04}a^{6}+\frac{13\cdots 33}{59\cdots 36}a^{5}-\frac{22\cdots 71}{11\cdots 76}a^{4}-\frac{50\cdots 73}{78\cdots 56}a^{3}+\frac{67\cdots 65}{23\cdots 52}a^{2}-\frac{34\cdots 59}{58\cdots 88}a+\frac{20\cdots 95}{39\cdots 31}$, $\frac{29\cdots 23}{74\cdots 64}a^{15}-\frac{35\cdots 97}{74\cdots 64}a^{14}+\frac{87\cdots 37}{37\cdots 32}a^{13}-\frac{25\cdots 97}{12\cdots 96}a^{12}+\frac{94\cdots 17}{74\cdots 64}a^{11}-\frac{12\cdots 57}{74\cdots 64}a^{10}+\frac{26\cdots 57}{18\cdots 16}a^{9}-\frac{14\cdots 53}{74\cdots 64}a^{8}+\frac{67\cdots 15}{74\cdots 64}a^{7}-\frac{27\cdots 85}{18\cdots 16}a^{6}+\frac{26\cdots 79}{59\cdots 36}a^{5}-\frac{13\cdots 49}{11\cdots 76}a^{4}+\frac{60\cdots 01}{46\cdots 04}a^{3}+\frac{35\cdots 75}{23\cdots 52}a^{2}+\frac{15\cdots 63}{58\cdots 88}a+\frac{79\cdots 42}{39\cdots 31}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 4516212.78969 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 4516212.78969 \cdot 33}{2\cdot\sqrt{1077123334824966013513439398801}}\cr\approx \mathstrut & 0.174407264376 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 + 20*x^14 - 53*x^13 + 425*x^12 - 1761*x^11 + 8234*x^10 - 26439*x^9 + 85127*x^8 - 227294*x^7 + 576600*x^6 - 1117344*x^5 + 2015984*x^4 - 2860288*x^3 + 4678656*x^2 - 5948416*x + 5607424) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 5*x^15 + 20*x^14 - 53*x^13 + 425*x^12 - 1761*x^11 + 8234*x^10 - 26439*x^9 + 85127*x^8 - 227294*x^7 + 576600*x^6 - 1117344*x^5 + 2015984*x^4 - 2860288*x^3 + 4678656*x^2 - 5948416*x + 5607424, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 5*x^15 + 20*x^14 - 53*x^13 + 425*x^12 - 1761*x^11 + 8234*x^10 - 26439*x^9 + 85127*x^8 - 227294*x^7 + 576600*x^6 - 1117344*x^5 + 2015984*x^4 - 2860288*x^3 + 4678656*x^2 - 5948416*x + 5607424); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 5*x^15 + 20*x^14 - 53*x^13 + 425*x^12 - 1761*x^11 + 8234*x^10 - 26439*x^9 + 85127*x^8 - 227294*x^7 + 576600*x^6 - 1117344*x^5 + 2015984*x^4 - 2860288*x^3 + 4678656*x^2 - 5948416*x + 5607424); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2:C_8$ (as 16T24):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 32
The 20 conjugacy class representatives for $C_2^2 : C_8$
Character table for $C_2^2 : C_8$

Intermediate fields

\(\Q(\sqrt{41}) \), 4.4.68921.1, 4.0.5031233.1, 4.0.122713.1, 8.0.194754273881.1, 8.8.1037845525511849.1, 8.0.25313305500289.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 16 sibling: 16.0.30588408049083077668563908786045909041.1
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{4}$ ${\href{/padicField/3.8.0.1}{8} }^{2}$ ${\href{/padicField/5.4.0.1}{4} }^{4}$ ${\href{/padicField/7.8.0.1}{8} }^{2}$ ${\href{/padicField/11.8.0.1}{8} }^{2}$ ${\href{/padicField/13.8.0.1}{8} }^{2}$ ${\href{/padicField/17.8.0.1}{8} }^{2}$ ${\href{/padicField/19.8.0.1}{8} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{8}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{8}$ ${\href{/padicField/37.2.0.1}{2} }^{8}$ R ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.8.0.1}{8} }^{2}$ ${\href{/padicField/53.8.0.1}{8} }^{2}$ ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(41\) Copy content Toggle raw display 41.2.8.14a1.2$x^{16} + 304 x^{15} + 40480 x^{14} + 3085600 x^{13} + 147416080 x^{12} + 4529584192 x^{11} + 87831092608 x^{10} + 996302227840 x^{9} + 5391168776800 x^{8} + 5977813367040 x^{7} + 3161919333888 x^{6} + 978390185472 x^{5} + 191051239680 x^{4} + 23993625600 x^{3} + 1888634880 x^{2} + 85100544 x + 1679657$$8$$2$$14$$C_8\times C_2$$$[\ ]_{8}^{2}$$
\(73\) Copy content Toggle raw display 73.4.1.0a1.1$x^{4} + 16 x^{2} + 56 x + 5$$1$$4$$0$$C_4$$$[\ ]^{4}$$
73.4.1.0a1.1$x^{4} + 16 x^{2} + 56 x + 5$$1$$4$$0$$C_4$$$[\ ]^{4}$$
73.4.2.4a1.2$x^{8} + 32 x^{6} + 112 x^{5} + 266 x^{4} + 1792 x^{3} + 3296 x^{2} + 560 x + 98$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)