Normalized defining polynomial
\( x^{16} - 5 x^{15} + 20 x^{14} - 53 x^{13} + 425 x^{12} - 1761 x^{11} + 8234 x^{10} - 26439 x^{9} + 85127 x^{8} - 227294 x^{7} + 576600 x^{6} - 1117344 x^{5} + 2015984 x^{4} - 2860288 x^{3} + 4678656 x^{2} - 5948416 x + 5607424 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1077123334824966013513439398801=41^{14}\cdot 73^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{3}{8} a^{8} - \frac{3}{8} a^{7} + \frac{3}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{11} + \frac{3}{16} a^{9} - \frac{3}{16} a^{8} + \frac{3}{16} a^{7} - \frac{1}{8} a^{6} - \frac{7}{16} a^{5} + \frac{3}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{12} - \frac{5}{64} a^{10} - \frac{11}{64} a^{9} + \frac{3}{64} a^{8} + \frac{3}{32} a^{7} + \frac{1}{64} a^{6} + \frac{11}{64} a^{5} - \frac{1}{32} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{468224} a^{14} - \frac{673}{468224} a^{13} - \frac{167}{14632} a^{12} + \frac{197}{15104} a^{11} + \frac{17077}{468224} a^{10} + \frac{24099}{468224} a^{9} + \frac{15491}{234112} a^{8} - \frac{199583}{468224} a^{7} + \frac{96395}{468224} a^{6} + \frac{116911}{234112} a^{5} + \frac{6463}{14632} a^{4} - \frac{655}{3658} a^{3} - \frac{5793}{29264} a^{2} + \frac{2559}{7316} a + \frac{564}{1829}$, $\frac{1}{148742268715640063595016247420912892928} a^{15} - \frac{77799424602646228316903019021077}{148742268715640063595016247420912892928} a^{14} + \frac{59710247126172652450020253368029397}{37185567178910015898754061855228223232} a^{13} - \frac{539457597260070044705291547423287717}{148742268715640063595016247420912892928} a^{12} + \frac{8680715502099908704956755006265061945}{148742268715640063595016247420912892928} a^{11} + \frac{15535072470016155848189280244442424543}{148742268715640063595016247420912892928} a^{10} - \frac{13556613322108277694419905025902296299}{74371134357820031797508123710456446464} a^{9} - \frac{15149588044067563809529033199759899991}{148742268715640063595016247420912892928} a^{8} + \frac{63145431660925432771694040370734918615}{148742268715640063595016247420912892928} a^{7} + \frac{7628941695899077981670901636207123985}{74371134357820031797508123710456446464} a^{6} + \frac{1631182660791769906289665804716788937}{18592783589455007949377030927614111616} a^{5} + \frac{912609898124737580987524821326361989}{2324097948681875993672128865951763952} a^{4} + \frac{1226840856983463319786094837319643751}{9296391794727503974688515463807055808} a^{3} + \frac{99005469206000971641253138339346493}{581024487170468998418032216487940988} a^{2} - \frac{218033789841340978904497722092107179}{581024487170468998418032216487940988} a + \frac{473128043561555809212484712268360}{3925841129530195935256974435729331}$
Class group and class number
$C_{33}$, which has order $33$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4516212.78969 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 4.0.5031233.1, 4.0.122713.1, 8.0.194754273881.1, 8.8.1037845525511849.1, 8.0.25313305500289.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $73$ | 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 73.8.4.1 | $x^{8} + 138554 x^{4} - 389017 x^{2} + 4799302729$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |