Normalized defining polynomial
\( x^{15} - 99 x^{13} - 396 x^{12} - 3868 x^{11} - 27974 x^{10} + 97245 x^{9} + 2044656 x^{8} + 10660124 x^{7} + 28900022 x^{6} + 46578665 x^{5} + 46949760 x^{4} + 29930225 x^{3} + 11744850 x^{2} + 2593500 x + 247000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6381262105849605201341604346805613756416000000=-\,2^{24}\cdot 5^{6}\cdot 13^{4}\cdot 17\cdot 19^{4}\cdot 37^{5}\cdot 74483599^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1131.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 17, 19, 37, 74483599$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{5} a^{6} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3}$, $\frac{1}{5} a^{7} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{8} - \frac{1}{25} a^{6} + \frac{1}{25} a^{5} - \frac{1}{25} a^{4} - \frac{8}{25} a^{3} + \frac{4}{25} a^{2} - \frac{2}{5}$, $\frac{1}{25} a^{9} - \frac{1}{25} a^{7} + \frac{1}{25} a^{6} - \frac{1}{25} a^{5} - \frac{8}{25} a^{4} + \frac{4}{25} a^{3} - \frac{2}{5} a$, $\frac{1}{25} a^{10} + \frac{1}{25} a^{7} - \frac{2}{25} a^{6} - \frac{2}{25} a^{5} + \frac{3}{25} a^{4} + \frac{2}{25} a^{3} + \frac{9}{25} a^{2} - \frac{2}{5}$, $\frac{1}{125} a^{11} + \frac{1}{125} a^{9} - \frac{1}{125} a^{8} - \frac{3}{125} a^{7} - \frac{4}{125} a^{6} + \frac{36}{125} a^{4} - \frac{61}{125} a^{3} - \frac{33}{125} a^{2} - \frac{4}{25} a + \frac{9}{25}$, $\frac{1}{625} a^{12} + \frac{6}{625} a^{10} + \frac{4}{625} a^{9} + \frac{12}{625} a^{8} - \frac{54}{625} a^{7} + \frac{6}{125} a^{6} + \frac{11}{625} a^{5} - \frac{151}{625} a^{4} + \frac{302}{625} a^{3} + \frac{62}{125} a^{2} + \frac{49}{125} a + \frac{2}{25}$, $\frac{1}{2500000} a^{13} - \frac{31}{125000} a^{12} - \frac{7159}{2500000} a^{11} + \frac{5423}{312500} a^{10} - \frac{1244}{78125} a^{9} - \frac{23827}{1250000} a^{8} - \frac{23519}{500000} a^{7} - \frac{52901}{625000} a^{6} - \frac{25837}{312500} a^{5} + \frac{326691}{1250000} a^{4} + \frac{79597}{500000} a^{3} + \frac{49067}{125000} a^{2} + \frac{31653}{100000} a - \frac{4661}{50000}$, $\frac{1}{80000000} a^{14} + \frac{1}{8000000} a^{13} + \frac{10241}{80000000} a^{12} + \frac{76607}{40000000} a^{11} + \frac{33757}{5000000} a^{10} - \frac{787347}{40000000} a^{9} + \frac{207277}{16000000} a^{8} - \frac{344227}{40000000} a^{7} - \frac{92413}{2500000} a^{6} - \frac{2788549}{40000000} a^{5} + \frac{2368129}{16000000} a^{4} + \frac{3870789}{8000000} a^{3} + \frac{1314221}{3200000} a^{2} + \frac{378617}{800000} a - \frac{36043}{160000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1801375611110000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 10368000 |
| The 140 conjugacy class representatives for [S(5)^3]S(3)=S(5)wrS(3) are not computed |
| Character table for [S(5)^3]S(3)=S(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | R | R | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.22.38 | $x^{12} - 12 x^{8} - 8 x^{6} + 4 x^{4} + 16 x^{2} - 4$ | $6$ | $2$ | $22$ | 12T50 | $[2, 8/3, 8/3, 3]_{3}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.5.4.1 | $x^{5} - 13$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ | |
| 19.8.0.1 | $x^{8} - x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 37 | Data not computed | ||||||
| 74483599 | Data not computed | ||||||