Properties

Label 15.9.638...000.1
Degree $15$
Signature $[9, 3]$
Discriminant $-6.381\times 10^{45}$
Root discriminant \(1131.52\)
Ramified primes $2,5,13,17,19,37,74483599$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_5^3.S_3$ (as 15T102)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 99*x^13 - 396*x^12 - 3868*x^11 - 27974*x^10 + 97245*x^9 + 2044656*x^8 + 10660124*x^7 + 28900022*x^6 + 46578665*x^5 + 46949760*x^4 + 29930225*x^3 + 11744850*x^2 + 2593500*x + 247000)
 
gp: K = bnfinit(y^15 - 99*y^13 - 396*y^12 - 3868*y^11 - 27974*y^10 + 97245*y^9 + 2044656*y^8 + 10660124*y^7 + 28900022*y^6 + 46578665*y^5 + 46949760*y^4 + 29930225*y^3 + 11744850*y^2 + 2593500*y + 247000, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 - 99*x^13 - 396*x^12 - 3868*x^11 - 27974*x^10 + 97245*x^9 + 2044656*x^8 + 10660124*x^7 + 28900022*x^6 + 46578665*x^5 + 46949760*x^4 + 29930225*x^3 + 11744850*x^2 + 2593500*x + 247000);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 99*x^13 - 396*x^12 - 3868*x^11 - 27974*x^10 + 97245*x^9 + 2044656*x^8 + 10660124*x^7 + 28900022*x^6 + 46578665*x^5 + 46949760*x^4 + 29930225*x^3 + 11744850*x^2 + 2593500*x + 247000)
 

\( x^{15} - 99 x^{13} - 396 x^{12} - 3868 x^{11} - 27974 x^{10} + 97245 x^{9} + 2044656 x^{8} + \cdots + 247000 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $15$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[9, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-6381262105849605201341604346805613756416000000\) \(\medspace = -\,2^{24}\cdot 5^{6}\cdot 13^{4}\cdot 17\cdot 19^{4}\cdot 37^{5}\cdot 74483599^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(1131.52\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{8/3}5^{1/2}13^{4/5}17^{1/2}19^{4/5}37^{1/2}74483599^{1/2}\approx 252199876.32092622$
Ramified primes:   \(2\), \(5\), \(13\), \(17\), \(19\), \(37\), \(74483599\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-629}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5}a^{5}+\frac{2}{5}a^{3}-\frac{2}{5}a^{2}$, $\frac{1}{5}a^{6}+\frac{2}{5}a^{4}-\frac{2}{5}a^{3}$, $\frac{1}{5}a^{7}-\frac{2}{5}a^{4}+\frac{1}{5}a^{3}-\frac{1}{5}a^{2}$, $\frac{1}{25}a^{8}-\frac{1}{25}a^{6}+\frac{1}{25}a^{5}-\frac{1}{25}a^{4}-\frac{8}{25}a^{3}+\frac{4}{25}a^{2}-\frac{2}{5}$, $\frac{1}{25}a^{9}-\frac{1}{25}a^{7}+\frac{1}{25}a^{6}-\frac{1}{25}a^{5}-\frac{8}{25}a^{4}+\frac{4}{25}a^{3}-\frac{2}{5}a$, $\frac{1}{25}a^{10}+\frac{1}{25}a^{7}-\frac{2}{25}a^{6}-\frac{2}{25}a^{5}+\frac{3}{25}a^{4}+\frac{2}{25}a^{3}+\frac{9}{25}a^{2}-\frac{2}{5}$, $\frac{1}{125}a^{11}+\frac{1}{125}a^{9}-\frac{1}{125}a^{8}-\frac{3}{125}a^{7}-\frac{4}{125}a^{6}+\frac{36}{125}a^{4}-\frac{61}{125}a^{3}-\frac{33}{125}a^{2}-\frac{4}{25}a+\frac{9}{25}$, $\frac{1}{625}a^{12}+\frac{6}{625}a^{10}+\frac{4}{625}a^{9}+\frac{12}{625}a^{8}-\frac{54}{625}a^{7}+\frac{6}{125}a^{6}+\frac{11}{625}a^{5}-\frac{151}{625}a^{4}+\frac{302}{625}a^{3}+\frac{62}{125}a^{2}+\frac{49}{125}a+\frac{2}{25}$, $\frac{1}{2500000}a^{13}-\frac{31}{125000}a^{12}-\frac{7159}{2500000}a^{11}+\frac{5423}{312500}a^{10}-\frac{1244}{78125}a^{9}-\frac{23827}{1250000}a^{8}-\frac{23519}{500000}a^{7}-\frac{52901}{625000}a^{6}-\frac{25837}{312500}a^{5}+\frac{326691}{1250000}a^{4}+\frac{79597}{500000}a^{3}+\frac{49067}{125000}a^{2}+\frac{31653}{100000}a-\frac{4661}{50000}$, $\frac{1}{80000000}a^{14}+\frac{1}{8000000}a^{13}+\frac{10241}{80000000}a^{12}+\frac{76607}{40000000}a^{11}+\frac{33757}{5000000}a^{10}-\frac{787347}{40000000}a^{9}+\frac{207277}{16000000}a^{8}-\frac{344227}{40000000}a^{7}-\frac{92413}{2500000}a^{6}-\frac{2788549}{40000000}a^{5}+\frac{2368129}{16000000}a^{4}+\frac{3870789}{8000000}a^{3}+\frac{1314221}{3200000}a^{2}+\frac{378617}{800000}a-\frac{36043}{160000}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{230068283}{40000000}a^{14}-\frac{66061281}{20000000}a^{13}-\frac{22701994757}{40000000}a^{12}-\frac{7806844711}{4000000}a^{11}-\frac{52810175177}{2500000}a^{10}-\frac{2975193220833}{20000000}a^{9}+\frac{25794019099323}{40000000}a^{8}+\frac{227811838071879}{20000000}a^{7}+\frac{13692254715679}{250000}a^{6}+\frac{26\!\cdots\!49}{20000000}a^{5}+\frac{76\!\cdots\!91}{40000000}a^{4}+\frac{25640918188119}{160000}a^{3}+\frac{636308129973659}{8000000}a^{2}+\frac{8599869039567}{400000}a+\frac{977524721211}{400000}$, $\frac{712516249}{80000000}a^{14}-\frac{202091843}{40000000}a^{13}-\frac{70312448871}{80000000}a^{12}-\frac{24226743173}{8000000}a^{11}-\frac{163645482731}{5000000}a^{10}-\frac{9222973422299}{40000000}a^{9}+\frac{79761444062969}{80000000}a^{8}+\frac{705833051626837}{40000000}a^{7}+\frac{42464929787647}{500000}a^{6}+\frac{83\!\cdots\!47}{40000000}a^{5}+\frac{23\!\cdots\!73}{80000000}a^{4}+\frac{15981326580609}{64000}a^{3}+\frac{19\!\cdots\!77}{16000000}a^{2}+\frac{26952873015601}{800000}a+\frac{3075138921633}{800000}$, $\frac{33\!\cdots\!01}{40000000}a^{14}-\frac{20\!\cdots\!67}{4000000}a^{13}-\frac{32\!\cdots\!59}{40000000}a^{12}-\frac{55\!\cdots\!33}{20000000}a^{11}-\frac{75\!\cdots\!63}{2500000}a^{10}-\frac{42\!\cdots\!27}{20000000}a^{9}+\frac{75\!\cdots\!21}{8000000}a^{8}+\frac{32\!\cdots\!73}{20000000}a^{7}+\frac{97\!\cdots\!97}{1250000}a^{6}+\frac{38\!\cdots\!91}{20000000}a^{5}+\frac{21\!\cdots\!77}{8000000}a^{4}+\frac{89\!\cdots\!09}{4000000}a^{3}+\frac{17\!\cdots\!73}{1600000}a^{2}+\frac{11\!\cdots\!57}{400000}a+\frac{52\!\cdots\!81}{16000}$, $\frac{354978519975263}{40000000}a^{14}-\frac{106670000940973}{20000000}a^{13}-\frac{35\!\cdots\!97}{40000000}a^{12}-\frac{59\!\cdots\!67}{20000000}a^{11}-\frac{81\!\cdots\!33}{2500000}a^{10}-\frac{45\!\cdots\!57}{20000000}a^{9}+\frac{40\!\cdots\!59}{40000000}a^{8}+\frac{35\!\cdots\!59}{20000000}a^{7}+\frac{10\!\cdots\!03}{1250000}a^{6}+\frac{41\!\cdots\!61}{20000000}a^{5}+\frac{11\!\cdots\!03}{40000000}a^{4}+\frac{97\!\cdots\!71}{4000000}a^{3}+\frac{95\!\cdots\!47}{8000000}a^{2}+\frac{12\!\cdots\!39}{400000}a+\frac{14\!\cdots\!23}{400000}$, $\frac{317714539961143}{16000000}a^{14}-\frac{519993138459377}{40000000}a^{13}-\frac{31\!\cdots\!41}{16000000}a^{12}-\frac{26\!\cdots\!27}{40000000}a^{11}-\frac{36\!\cdots\!41}{5000000}a^{10}-\frac{20\!\cdots\!89}{40000000}a^{9}+\frac{18\!\cdots\!91}{80000000}a^{8}+\frac{31\!\cdots\!27}{8000000}a^{7}+\frac{46\!\cdots\!93}{2500000}a^{6}+\frac{18\!\cdots\!57}{40000000}a^{5}+\frac{50\!\cdots\!47}{80000000}a^{4}+\frac{41\!\cdots\!91}{8000000}a^{3}+\frac{40\!\cdots\!03}{16000000}a^{2}+\frac{53\!\cdots\!27}{800000}a+\frac{59\!\cdots\!47}{800000}$, $\frac{66\!\cdots\!57}{16000000}a^{14}-\frac{37\!\cdots\!79}{40000000}a^{13}-\frac{62\!\cdots\!71}{16000000}a^{12}-\frac{30\!\cdots\!69}{40000000}a^{11}-\frac{71\!\cdots\!47}{5000000}a^{10}-\frac{33\!\cdots\!63}{40000000}a^{9}+\frac{47\!\cdots\!57}{80000000}a^{8}+\frac{57\!\cdots\!37}{8000000}a^{7}+\frac{70\!\cdots\!71}{2500000}a^{6}+\frac{22\!\cdots\!19}{40000000}a^{5}+\frac{52\!\cdots\!69}{80000000}a^{4}+\frac{37\!\cdots\!77}{8000000}a^{3}+\frac{31\!\cdots\!81}{16000000}a^{2}+\frac{36\!\cdots\!89}{800000}a+\frac{36\!\cdots\!69}{800000}$, $\frac{10\!\cdots\!89}{80000000}a^{14}-\frac{337359926518439}{8000000}a^{13}-\frac{95\!\cdots\!51}{80000000}a^{12}-\frac{62\!\cdots\!17}{40000000}a^{11}-\frac{23\!\cdots\!47}{5000000}a^{10}-\frac{91\!\cdots\!63}{40000000}a^{9}+\frac{32\!\cdots\!77}{16000000}a^{8}+\frac{84\!\cdots\!97}{40000000}a^{7}+\frac{19\!\cdots\!03}{2500000}a^{6}+\frac{58\!\cdots\!79}{40000000}a^{5}+\frac{26\!\cdots\!89}{16000000}a^{4}+\frac{90\!\cdots\!41}{8000000}a^{3}+\frac{14\!\cdots\!61}{3200000}a^{2}+\frac{85\!\cdots\!53}{800000}a+\frac{16\!\cdots\!81}{160000}$, $\frac{12\!\cdots\!93}{80000000}a^{14}-\frac{35\!\cdots\!99}{8000000}a^{13}-\frac{12\!\cdots\!87}{80000000}a^{12}-\frac{23\!\cdots\!09}{40000000}a^{11}-\frac{29\!\cdots\!79}{5000000}a^{10}-\frac{16\!\cdots\!91}{40000000}a^{9}+\frac{24\!\cdots\!97}{16000000}a^{8}+\frac{12\!\cdots\!89}{40000000}a^{7}+\frac{40\!\cdots\!31}{2500000}a^{6}+\frac{16\!\cdots\!03}{40000000}a^{5}+\frac{10\!\cdots\!09}{16000000}a^{4}+\frac{47\!\cdots\!57}{8000000}a^{3}+\frac{10\!\cdots\!41}{3200000}a^{2}+\frac{75\!\cdots\!41}{800000}a+\frac{18\!\cdots\!13}{160000}$, $\frac{15\!\cdots\!19}{80000000}a^{14}-\frac{24\!\cdots\!53}{40000000}a^{13}-\frac{13\!\cdots\!01}{80000000}a^{12}-\frac{17\!\cdots\!67}{8000000}a^{11}-\frac{33\!\cdots\!21}{5000000}a^{10}-\frac{12\!\cdots\!09}{40000000}a^{9}+\frac{23\!\cdots\!99}{80000000}a^{8}+\frac{12\!\cdots\!47}{40000000}a^{7}+\frac{54\!\cdots\!93}{500000}a^{6}+\frac{83\!\cdots\!77}{40000000}a^{5}+\frac{18\!\cdots\!83}{80000000}a^{4}+\frac{25\!\cdots\!67}{1600000}a^{3}+\frac{10\!\cdots\!67}{16000000}a^{2}+\frac{12\!\cdots\!51}{800000}a+\frac{12\!\cdots\!43}{800000}$, $\frac{40\!\cdots\!69}{40000000}a^{14}-\frac{13\!\cdots\!59}{20000000}a^{13}-\frac{39\!\cdots\!11}{40000000}a^{12}-\frac{65\!\cdots\!81}{20000000}a^{11}-\frac{91\!\cdots\!59}{2500000}a^{10}-\frac{51\!\cdots\!11}{20000000}a^{9}+\frac{45\!\cdots\!97}{40000000}a^{8}+\frac{39\!\cdots\!17}{20000000}a^{7}+\frac{11\!\cdots\!29}{1250000}a^{6}+\frac{45\!\cdots\!03}{20000000}a^{5}+\frac{12\!\cdots\!49}{40000000}a^{4}+\frac{10\!\cdots\!53}{4000000}a^{3}+\frac{99\!\cdots\!01}{8000000}a^{2}+\frac{13\!\cdots\!17}{400000}a+\frac{14\!\cdots\!09}{400000}$, $\frac{94\!\cdots\!51}{80000000}a^{14}-\frac{34\!\cdots\!93}{40000000}a^{13}-\frac{94\!\cdots\!89}{80000000}a^{12}-\frac{15\!\cdots\!11}{40000000}a^{11}-\frac{21\!\cdots\!97}{5000000}a^{10}-\frac{11\!\cdots\!13}{40000000}a^{9}+\frac{11\!\cdots\!19}{80000000}a^{8}+\frac{96\!\cdots\!83}{40000000}a^{7}+\frac{28\!\cdots\!49}{2500000}a^{6}+\frac{11\!\cdots\!09}{40000000}a^{5}+\frac{31\!\cdots\!23}{80000000}a^{4}+\frac{26\!\cdots\!83}{8000000}a^{3}+\frac{25\!\cdots\!27}{16000000}a^{2}+\frac{69\!\cdots\!59}{160000}a+\frac{39\!\cdots\!63}{800000}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1801375611110000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{9}\cdot(2\pi)^{3}\cdot 1801375611110000000 \cdot 1}{2\cdot\sqrt{6381262105849605201341604346805613756416000000}}\cr\approx \mathstrut & 1.43195891379680 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^15 - 99*x^13 - 396*x^12 - 3868*x^11 - 27974*x^10 + 97245*x^9 + 2044656*x^8 + 10660124*x^7 + 28900022*x^6 + 46578665*x^5 + 46949760*x^4 + 29930225*x^3 + 11744850*x^2 + 2593500*x + 247000)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^15 - 99*x^13 - 396*x^12 - 3868*x^11 - 27974*x^10 + 97245*x^9 + 2044656*x^8 + 10660124*x^7 + 28900022*x^6 + 46578665*x^5 + 46949760*x^4 + 29930225*x^3 + 11744850*x^2 + 2593500*x + 247000, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^15 - 99*x^13 - 396*x^12 - 3868*x^11 - 27974*x^10 + 97245*x^9 + 2044656*x^8 + 10660124*x^7 + 28900022*x^6 + 46578665*x^5 + 46949760*x^4 + 29930225*x^3 + 11744850*x^2 + 2593500*x + 247000);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 99*x^13 - 396*x^12 - 3868*x^11 - 27974*x^10 + 97245*x^9 + 2044656*x^8 + 10660124*x^7 + 28900022*x^6 + 46578665*x^5 + 46949760*x^4 + 29930225*x^3 + 11744850*x^2 + 2593500*x + 247000);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_5^3.S_3$ (as 15T102):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 10368000
The 140 conjugacy class representatives for $S_5^3.S_3$
Character table for $S_5^3.S_3$

Intermediate fields

3.3.148.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 18 sibling: data not computed
Degree 30 siblings: data not computed
Degree 36 siblings: data not computed
Degree 45 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{2}{,}\,{\href{/padicField/3.3.0.1}{3} }$ R ${\href{/padicField/7.9.0.1}{9} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }$ R R R ${\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ R ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.9.0.1}{9} }{,}\,{\href{/padicField/47.6.0.1}{6} }$ ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }$ ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.12.22.38$x^{12} + 8 x^{11} + 28 x^{10} + 44 x^{9} + 18 x^{8} - 32 x^{7} + 16 x^{6} + 64 x^{5} + 76 x^{4} - 24 x^{3} - 12 x^{2} + 36$$6$$2$$22$12T50$[2, 8/3, 8/3, 3]_{3}^{2}$
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(13\) Copy content Toggle raw display 13.4.0.1$x^{4} + 3 x^{2} + 12 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.5.4.1$x^{5} + 13$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
13.6.0.1$x^{6} + 10 x^{3} + 11 x^{2} + 11 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
\(17\) Copy content Toggle raw display 17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.3.0.1$x^{3} + x + 14$$1$$3$$0$$C_3$$[\ ]^{3}$
17.4.0.1$x^{4} + 7 x^{2} + 10 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
\(19\) Copy content Toggle raw display 19.2.0.1$x^{2} + 18 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.5.4.1$x^{5} + 19$$5$$1$$4$$D_{5}$$[\ ]_{5}^{2}$
19.8.0.1$x^{8} + x^{4} + 12 x^{3} + 10 x^{2} + 3 x + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
\(37\) Copy content Toggle raw display $\Q_{37}$$x + 35$$1$$1$$0$Trivial$[\ ]$
37.2.1.1$x^{2} + 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.1$x^{2} + 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.4.0.1$x^{4} + 6 x^{2} + 24 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
37.6.3.1$x^{6} + 2775 x^{5} + 2566998 x^{4} + 791680745 x^{3} + 110476893 x^{2} + 4842384300 x + 27887445532$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
\(74483599\) Copy content Toggle raw display $\Q_{74483599}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{74483599}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$