Properties

Label 15T102
Order \(10368000\)
n \(15\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $15$
Transitive number $t$ :  $102$
CHM label :  $[S(5)^{3}]S(3)=S(5)wrS(3)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,11)(2,7)(4,14)(5,10)(8,13), (6,9), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (3,6,9,12,15)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
24:  $S_4$
48:  $S_4\times C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $S_3$

Degree 5: None

Low degree siblings

18T958, 30T2981, 30T2984, 30T2985, 30T2986, 30T2989, 30T2990, 30T2994, 30T2998, 36T60049, 36T60050, 36T60051, 36T60052, 36T60053, 36T60054, 36T60055, 45T2638

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 140 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $10368000=2^{10} \cdot 3^{4} \cdot 5^{3}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.