Normalized defining polynomial
\( x^{15} - 5 x^{14} - 80 x^{13} + 460 x^{12} + 2265 x^{11} - 15553 x^{10} - 24090 x^{9} + 392310 x^{8} - 976120 x^{7} + 1638320 x^{6} - 2453272 x^{5} + 68720 x^{4} - 5194480 x^{3} + 231378160 x^{2} + 420777040 x - 520184176 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(140685733870773315116885561600000000000000000=2^{23}\cdot 5^{17}\cdot 89^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $877.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5}$, $\frac{1}{10} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{7} - \frac{1}{2} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{10} a^{8} - \frac{1}{2} a^{4} + \frac{2}{5} a^{3}$, $\frac{1}{50} a^{9} + \frac{1}{50} a^{8} + \frac{1}{50} a^{7} + \frac{1}{50} a^{6} - \frac{2}{25} a^{5} + \frac{2}{25} a^{4} + \frac{2}{25} a^{3} + \frac{2}{25} a^{2} + \frac{2}{25} a - \frac{8}{25}$, $\frac{1}{8900} a^{10} - \frac{13}{8900} a^{9} + \frac{53}{2225} a^{8} + \frac{63}{2225} a^{7} + \frac{287}{8900} a^{6} - \frac{107}{1780} a^{5} - \frac{888}{2225} a^{4} - \frac{588}{2225} a^{3} - \frac{898}{2225} a^{2} - \frac{738}{2225} a + \frac{161}{2225}$, $\frac{1}{8900} a^{11} + \frac{43}{8900} a^{9} + \frac{169}{4450} a^{8} + \frac{3}{8900} a^{7} - \frac{91}{2225} a^{6} + \frac{173}{8900} a^{5} + \frac{211}{4450} a^{4} - \frac{87}{2225} a^{3} - \frac{397}{2225} a^{2} + \frac{357}{2225} a - \frac{577}{2225}$, $\frac{1}{44500} a^{12} - \frac{1}{22250} a^{11} + \frac{1}{44500} a^{10} - \frac{27}{4450} a^{9} - \frac{349}{8900} a^{8} + \frac{219}{22250} a^{7} + \frac{239}{44500} a^{6} - \frac{831}{22250} a^{5} - \frac{379}{2225} a^{4} + \frac{676}{2225} a^{3} + \frac{1309}{11125} a^{2} + \frac{5497}{11125} a + \frac{1334}{11125}$, $\frac{1}{89000} a^{13} - \frac{1}{89000} a^{12} + \frac{1}{22250} a^{11} - \frac{1}{22250} a^{10} - \frac{159}{17800} a^{9} + \frac{3163}{89000} a^{8} + \frac{361}{44500} a^{7} - \frac{1419}{44500} a^{6} - \frac{969}{11125} a^{5} - \frac{159}{4450} a^{4} + \frac{6409}{22250} a^{3} + \frac{238}{11125} a^{2} + \frac{2198}{11125} a + \frac{2757}{11125}$, $\frac{1}{9044983275352457808447509724761000} a^{14} + \frac{49106609225112113527287397041}{9044983275352457808447509724761000} a^{13} + \frac{9102707840941707628335864249}{1130622909419057226055938715595125} a^{12} + \frac{4039003502677186448376505837}{4522491637676228904223754862380500} a^{11} - \frac{5136224739418851798191390447}{101629025565757952903904603649000} a^{10} - \frac{67563679538156252634320077499427}{9044983275352457808447509724761000} a^{9} - \frac{57917211743901688732828250312291}{4522491637676228904223754862380500} a^{8} - \frac{36711114667247162831194409890103}{1130622909419057226055938715595125} a^{7} - \frac{42101677296412792165231479549721}{1130622909419057226055938715595125} a^{6} + \frac{87096457171757044142403136130919}{2261245818838114452111877431190250} a^{5} + \frac{615913780977266484120252803213319}{2261245818838114452111877431190250} a^{4} + \frac{493766660320779266886310525779877}{1130622909419057226055938715595125} a^{3} + \frac{80806538674511241766076941809604}{1130622909419057226055938715595125} a^{2} + \frac{174675251659561390005435757717893}{1130622909419057226055938715595125} a + \frac{543491202631732019159366184455404}{1130622909419057226055938715595125}$
Class group and class number
$C_{4}\times C_{40}$, which has order $160$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 308642886210973.75 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.3.17800.1, 5.1.3137112050000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.19.1 | $x^{10} - 2$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $89$ | 89.5.4.1 | $x^{5} - 89$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |
| 89.10.9.1 | $x^{10} - 89$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ |