Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $11$ | |
| Group : | $F_5 \times S_3$ | |
| CHM label : | $F(5)[x]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,7)(4,14)(5,10)(8,13), (1,7,4,13)(2,14,8,11)(3,6,12,9), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 6: $S_3$ 8: $C_4\times C_2$ 12: $D_{6}$ 20: $F_5$ 24: $S_3 \times C_4$ 40: $F_{5}\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: $F_5$
Low degree siblings
30T23, 30T24, 30T32Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 4, 2, 1 $ | $15$ | $4$ | $( 2, 3, 5, 9)( 4, 7,13,10)( 6,11)( 8,15,14,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $5$ | $2$ | $( 2, 5)( 3, 9)( 4,13)( 7,10)( 8,14)(12,15)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $5$ | $4$ | $( 2, 8, 5,14)( 3,15, 9,12)( 4, 7,13,10)$ |
| $ 4, 4, 4, 2, 1 $ | $15$ | $4$ | $( 2, 9, 5, 3)( 4,10,13, 7)( 6,11)( 8,12,14,15)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2,12)( 3, 8)( 5,15)( 6,11)( 9,14)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $5$ | $4$ | $( 2,14, 5, 8)( 3,12, 9,15)( 4,10,13, 7)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1 $ | $15$ | $2$ | $( 2,15)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)( 8, 9)$ |
| $ 15 $ | $8$ | $15$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15)$ |
| $ 6, 6, 3 $ | $10$ | $6$ | $( 1, 2, 6, 7,11,12)( 3,10, 8,15,13, 5)( 4,14, 9)$ |
| $ 12, 3 $ | $10$ | $12$ | $( 1, 2, 9,13,11,12, 4, 8, 6, 7,14, 3)( 5,15,10)$ |
| $ 10, 5 $ | $12$ | $10$ | $( 1, 2,13,14,10,11, 7, 8, 4, 5)( 3, 9,15, 6,12)$ |
| $ 12, 3 $ | $10$ | $12$ | $( 1, 2,15, 4,11,12,10,14, 6, 7, 5, 9)( 3,13, 8)$ |
| $ 5, 5, 5 $ | $4$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
Group invariants
| Order: | $120=2^{3} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [120, 36] |
| Character table: |
2 3 3 3 3 3 3 3 3 . 2 2 1 2 1 2
3 1 . 1 1 . . 1 . 1 1 1 . 1 1 1
5 1 . . . . 1 . . 1 . . 1 . 1 1
1a 4a 2a 4b 4c 2b 4d 2c 15a 6a 12a 10a 12b 5a 3a
2P 1a 2a 1a 2a 2a 1a 2a 1a 15a 3a 6a 5a 6a 5a 3a
3P 1a 4c 2a 4d 4a 2b 4b 2c 5a 2a 4d 10a 4b 5a 1a
5P 1a 4a 2a 4b 4c 2b 4d 2c 3a 6a 12a 2b 12b 1a 3a
7P 1a 4c 2a 4d 4a 2b 4b 2c 15a 6a 12b 10a 12a 5a 3a
11P 1a 4c 2a 4d 4a 2b 4b 2c 15a 6a 12b 10a 12a 5a 3a
13P 1a 4a 2a 4b 4c 2b 4d 2c 15a 6a 12a 10a 12b 5a 3a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 -1 1 -1 1 1 1 -1 1 -1 1 1
X.3 1 -1 1 1 -1 -1 1 -1 1 1 1 -1 1 1 1
X.4 1 1 1 -1 1 -1 -1 -1 1 1 -1 -1 -1 1 1
X.5 1 A -1 A -A 1 -A -1 1 -1 A 1 -A 1 1
X.6 1 -A -1 -A A 1 A -1 1 -1 -A 1 A 1 1
X.7 1 A -1 -A -A -1 A 1 1 -1 -A -1 A 1 1
X.8 1 -A -1 A A -1 -A 1 1 -1 A -1 -A 1 1
X.9 2 . 2 -2 . . -2 . -1 -1 1 . 1 2 -1
X.10 2 . 2 2 . . 2 . -1 -1 -1 . -1 2 -1
X.11 2 . -2 B . . -B . -1 1 -A . A 2 -1
X.12 2 . -2 -B . . B . -1 1 A . -A 2 -1
X.13 4 . . . . -4 . . -1 . . 1 . -1 4
X.14 4 . . . . 4 . . -1 . . -1 . -1 4
X.15 8 . . . . . . . 1 . . . . -2 -4
A = -E(4)
= -Sqrt(-1) = -i
B = -2*E(4)
= -2*Sqrt(-1) = -2i
|