Normalized defining polynomial
\( x^{14} - 3 x^{13} - 9 x^{12} + 31 x^{11} + 27 x^{10} - 119 x^{9} - 27 x^{8} + 211 x^{7} - 7 x^{6} + \cdots + 3 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[4, 5]$ |
| |
| Discriminant: |
\(-3704349534869766103\)
|
| |
| Root discriminant: | \(21.20\) |
| |
| Galois root discriminant: | $3704349534869766103^{1/2}\approx 1924668681.8436482$ | ||
| Ramified primes: |
\(3704349534869766103\)
|
| |
| Discriminant root field: | $\Q(\sqrt{-37043\!\cdots\!66103}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{59}a^{13}-\frac{16}{59}a^{12}+\frac{22}{59}a^{11}-\frac{19}{59}a^{10}-\frac{21}{59}a^{9}-\frac{23}{59}a^{8}-\frac{23}{59}a^{7}-\frac{21}{59}a^{6}-\frac{29}{59}a^{5}+\frac{25}{59}a^{4}-\frac{6}{59}a^{3}+\frac{19}{59}a^{2}-\frac{21}{59}a-\frac{27}{59}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{13}{59}a^{13}-\frac{31}{59}a^{12}-\frac{127}{59}a^{11}+\frac{284}{59}a^{10}+\frac{494}{59}a^{9}-\frac{889}{59}a^{8}-\frac{1066}{59}a^{7}+\frac{1084}{59}a^{6}+\frac{1393}{59}a^{5}-\frac{442}{59}a^{4}-\frac{845}{59}a^{3}+\frac{129}{59}a^{2}+\frac{140}{59}a-\frac{56}{59}$, $a-1$, $a^{13}-3a^{12}-8a^{11}+29a^{10}+17a^{9}-100a^{8}+9a^{7}+147a^{6}-62a^{5}-83a^{4}+54a^{3}+6a^{2}-9a+2$, $\frac{35}{59}a^{13}-\frac{88}{59}a^{12}-\frac{351}{59}a^{11}+\frac{928}{59}a^{10}+\frac{1271}{59}a^{9}-\frac{3637}{59}a^{8}-\frac{1985}{59}a^{7}+\frac{6522}{59}a^{6}+\frac{1227}{59}a^{5}-\frac{5261}{59}a^{4}-\frac{269}{59}a^{3}+\frac{1550}{59}a^{2}+\frac{209}{59}a-\frac{119}{59}$, $\frac{17}{59}a^{13}-\frac{36}{59}a^{12}-\frac{157}{59}a^{11}+\frac{326}{59}a^{10}+\frac{528}{59}a^{9}-\frac{1040}{59}a^{8}-\frac{863}{59}a^{7}+\frac{1472}{59}a^{6}+\frac{864}{59}a^{5}-\frac{1109}{59}a^{4}-\frac{515}{59}a^{3}+\frac{500}{59}a^{2}+\frac{56}{59}a-\frac{46}{59}$, $\frac{2}{59}a^{13}-\frac{32}{59}a^{12}+\frac{44}{59}a^{11}+\frac{257}{59}a^{10}-\frac{455}{59}a^{9}-\frac{636}{59}a^{8}+\frac{1311}{59}a^{7}+\frac{430}{59}a^{6}-\frac{1356}{59}a^{5}+\frac{109}{59}a^{4}+\frac{519}{59}a^{3}-\frac{80}{59}a^{2}-\frac{101}{59}a+\frac{5}{59}$, $\frac{26}{59}a^{13}-\frac{62}{59}a^{12}-\frac{254}{59}a^{11}+\frac{627}{59}a^{10}+\frac{870}{59}a^{9}-\frac{2309}{59}a^{8}-\frac{1129}{59}a^{7}+\frac{3761}{59}a^{6}+\frac{13}{59}a^{5}-\frac{2595}{59}a^{4}+\frac{1024}{59}a^{3}+\frac{553}{59}a^{2}-\frac{428}{59}a+\frac{65}{59}$, $\frac{41}{59}a^{13}-\frac{66}{59}a^{12}-\frac{455}{59}a^{11}+\frac{637}{59}a^{10}+\frac{1912}{59}a^{9}-\frac{2182}{59}a^{8}-\frac{3775}{59}a^{7}+\frac{3210}{59}a^{6}+\frac{3472}{59}a^{5}-\frac{1984}{59}a^{4}-\frac{1131}{59}a^{3}+\frac{484}{59}a^{2}-\frac{35}{59}a-\frac{104}{59}$
|
| |
| Regulator: | \( 11913.6860087 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{5}\cdot 11913.6860087 \cdot 1}{2\cdot\sqrt{3704349534869766103}}\cr\approx \mathstrut & 0.484930498781 \end{aligned}\]
Galois group
| A non-solvable group of order 87178291200 |
| The 135 conjugacy class representatives for $S_{14}$ |
| Character table for $S_{14}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 28 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }^{2}$ | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.5.0.1}{5} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | ${\href{/padicField/7.13.0.1}{13} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.7.0.1}{7} }^{2}$ | ${\href{/padicField/13.9.0.1}{9} }{,}\,{\href{/padicField/13.5.0.1}{5} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.11.0.1}{11} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.14.0.1}{14} }$ | ${\href{/padicField/41.11.0.1}{11} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.13.0.1}{13} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.11.0.1}{11} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.11.0.1}{11} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3704349534869766103\)
| $\Q_{3704349534869766103}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3704349534869766103}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |