Properties

Label 14T63
Order \(87178291200\)
n \(14\)
Cyclic No
Abelian No
Solvable No
Primitive Yes
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $14$
Transitive number $t$ :  $63$
CHM label :  $S14$
Parity:  $-1$
Primitive:  Yes
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2,3,4,5,6,7,8,9,10,11,12,13,14), (1,2)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 7: None

Low degree siblings

28T1755

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 135 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $87178291200=2^{11} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.