Normalized defining polynomial
\( x^{14} - 6 x^{13} + 20 x^{12} - 46 x^{11} + 79 x^{10} - 108 x^{9} + 113 x^{8} - 92 x^{7} + 46 x^{6} + \cdots + 1 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[4, 5]$ |
| |
| Discriminant: |
\(-1524052425039147\)
\(\medspace = -\,3^{3}\cdot 2741^{4}\)
|
| |
| Root discriminant: | \(12.15\) |
| |
| Galois root discriminant: | $3^{1/2}2741^{1/2}\approx 90.68075870878012$ | ||
| Ramified primes: |
\(3\), \(2741\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3183}a^{13}-\frac{92}{3183}a^{12}+\frac{522}{1061}a^{11}-\frac{1036}{3183}a^{10}+\frac{17}{1061}a^{9}-\frac{437}{1061}a^{8}+\frac{1454}{3183}a^{7}-\frac{333}{1061}a^{6}+\frac{19}{3183}a^{5}+\frac{1544}{3183}a^{4}+\frac{881}{3183}a^{3}+\frac{215}{1061}a^{2}-\frac{1369}{3183}a-\frac{37}{3183}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{351}{1061}a^{13}-\frac{1523}{1061}a^{12}+\frac{4312}{1061}a^{11}-\frac{9262}{1061}a^{10}+\frac{15779}{1061}a^{9}-\frac{23029}{1061}a^{8}+\frac{24416}{1061}a^{7}-\frac{23861}{1061}a^{6}+\frac{14096}{1061}a^{5}-\frac{6593}{1061}a^{4}-\frac{2703}{1061}a^{3}+\frac{3585}{1061}a^{2}-\frac{3069}{1061}a-\frac{255}{1061}$, $\frac{1652}{3183}a^{13}-\frac{8749}{3183}a^{12}+\frac{8239}{1061}a^{11}-\frac{46763}{3183}a^{10}+\frac{20657}{1061}a^{9}-\frac{20603}{1061}a^{8}+\frac{33856}{3183}a^{7}+\frac{543}{1061}a^{6}-\frac{32272}{3183}a^{5}+\frac{36118}{3183}a^{4}-\frac{18317}{3183}a^{3}+\frac{806}{1061}a^{2}+\frac{7891}{3183}a-\frac{647}{3183}$, $\frac{254}{1061}a^{13}-\frac{1087}{1061}a^{12}+\frac{2011}{1061}a^{11}-\frac{1077}{1061}a^{10}-\frac{4022}{1061}a^{9}+\frac{11831}{1061}a^{8}-\frac{20071}{1061}a^{7}+\frac{22114}{1061}a^{6}-\frac{16394}{1061}a^{5}+\frac{4911}{1061}a^{4}+\frac{5208}{1061}a^{3}-\frac{6991}{1061}a^{2}+\frac{4526}{1061}a+\frac{151}{1061}$, $\frac{421}{3183}a^{13}-\frac{3719}{3183}a^{12}+\frac{4379}{1061}a^{11}-\frac{28732}{3183}a^{10}+\frac{14584}{1061}a^{9}-\frac{16339}{1061}a^{8}+\frac{42377}{3183}a^{7}-\frac{6507}{1061}a^{6}+\frac{1633}{3183}a^{5}+\frac{10241}{3183}a^{4}-\frac{4693}{3183}a^{3}+\frac{330}{1061}a^{2}+\frac{6140}{3183}a+\frac{338}{3183}$, $\frac{2533}{3183}a^{13}-\frac{13409}{3183}a^{12}+\frac{12952}{1061}a^{11}-\frac{77788}{3183}a^{10}+\frac{38817}{1061}a^{9}-\frac{48043}{1061}a^{8}+\frac{133937}{3183}a^{7}-\frac{33946}{1061}a^{6}+\frac{48127}{3183}a^{5}-\frac{13687}{3183}a^{4}-\frac{9259}{3183}a^{3}+\frac{2424}{1061}a^{2}-\frac{7756}{3183}a+\frac{1769}{3183}$, $\frac{518}{3183}a^{13}-\frac{3094}{3183}a^{12}+\frac{3024}{1061}a^{11}-\frac{17819}{3183}a^{10}+\frac{8806}{1061}a^{9}-\frac{10983}{1061}a^{8}+\frac{33814}{3183}a^{7}-\frac{9100}{1061}a^{6}+\frac{19391}{3183}a^{5}-\frac{11873}{3183}a^{4}+\frac{4372}{3183}a^{3}-\frac{35}{1061}a^{2}-\frac{2516}{3183}a+\frac{3115}{3183}$, $\frac{1190}{3183}a^{13}-\frac{7624}{3183}a^{12}+\frac{8983}{1061}a^{11}-\frac{64679}{3183}a^{10}+\frac{38267}{1061}a^{9}-\frac{53190}{1061}a^{8}+\frac{170590}{3183}a^{7}-\frac{47201}{1061}a^{6}+\frac{73538}{3183}a^{5}-\frac{11963}{3183}a^{4}-\frac{30647}{3183}a^{3}+\frac{8637}{1061}a^{2}-\frac{15329}{3183}a-\frac{2651}{3183}$, $a$
|
| |
| Regulator: | \( 121.507606686 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{5}\cdot 121.507606686 \cdot 1}{2\cdot\sqrt{1524052425039147}}\cr\approx \mathstrut & 0.243833202297 \end{aligned}\]
Galois group
$C_2^4:\GL(3,2)$ (as 14T43):
| A non-solvable group of order 2688 |
| The 22 conjugacy class representatives for $C_2^4:\GL(3,2)$ |
| Character table for $C_2^4:\GL(3,2)$ |
Intermediate fields
| 7.3.7513081.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 28 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.14.0.1}{14} }$ | R | ${\href{/padicField/5.14.0.1}{14} }$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.14.0.1}{14} }$ | ${\href{/padicField/13.7.0.1}{7} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{3}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{3}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.14.0.1}{14} }$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.14.0.1}{14} }$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(2741\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |