Properties

Label 14.2.446...173.1
Degree $14$
Signature $[2, 6]$
Discriminant $4.466\times 10^{18}$
Root discriminant \(21.49\)
Ramified primes $19,37$
Class number $1$
Class group trivial
Galois group $D_{14}$ (as 14T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^14 - 7*x^13 + 22*x^12 - 41*x^11 + 61*x^10 - 96*x^9 + 156*x^8 - 213*x^7 + 230*x^6 - 197*x^5 + 119*x^4 - 40*x^3 - 13*x^2 + 18*x - 9)
 
Copy content gp:K = bnfinit(y^14 - 7*y^13 + 22*y^12 - 41*y^11 + 61*y^10 - 96*y^9 + 156*y^8 - 213*y^7 + 230*y^6 - 197*y^5 + 119*y^4 - 40*y^3 - 13*y^2 + 18*y - 9, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - 7*x^13 + 22*x^12 - 41*x^11 + 61*x^10 - 96*x^9 + 156*x^8 - 213*x^7 + 230*x^6 - 197*x^5 + 119*x^4 - 40*x^3 - 13*x^2 + 18*x - 9);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^14 - 7*x^13 + 22*x^12 - 41*x^11 + 61*x^10 - 96*x^9 + 156*x^8 - 213*x^7 + 230*x^6 - 197*x^5 + 119*x^4 - 40*x^3 - 13*x^2 + 18*x - 9)
 

\( x^{14} - 7 x^{13} + 22 x^{12} - 41 x^{11} + 61 x^{10} - 96 x^{9} + 156 x^{8} - 213 x^{7} + 230 x^{6} + \cdots - 9 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $14$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[2, 6]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(4466153794705739173\) \(\medspace = 19^{6}\cdot 37^{7}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(21.49\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $19^{1/2}37^{1/2}\approx 26.514147167125703$
Ramified primes:   \(19\), \(37\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{37}) \)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{2}$, $\frac{1}{15}a^{11}+\frac{2}{15}a^{10}+\frac{1}{5}a^{7}+\frac{2}{5}a^{6}-\frac{4}{15}a^{3}+\frac{7}{15}a^{2}-\frac{1}{5}a-\frac{2}{5}$, $\frac{1}{255}a^{12}-\frac{2}{85}a^{11}-\frac{41}{255}a^{10}+\frac{1}{51}a^{9}+\frac{36}{85}a^{8}-\frac{6}{85}a^{7}+\frac{2}{5}a^{6}-\frac{7}{17}a^{5}-\frac{79}{255}a^{4}+\frac{33}{85}a^{3}-\frac{124}{255}a^{2}+\frac{58}{255}a-\frac{9}{85}$, $\frac{1}{765}a^{13}+\frac{1}{765}a^{12}-\frac{1}{51}a^{11}+\frac{109}{765}a^{10}-\frac{3}{85}a^{9}-\frac{3}{85}a^{8}-\frac{22}{51}a^{7}+\frac{28}{85}a^{6}-\frac{49}{765}a^{5}+\frac{311}{765}a^{4}+\frac{14}{255}a^{3}-\frac{334}{765}a^{2}+\frac{23}{51}a-\frac{38}{85}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

Ideal class group:  Trivial group, which has order $1$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $7$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{179}{765}a^{13}-\frac{877}{765}a^{12}+\frac{503}{255}a^{11}-\frac{637}{765}a^{10}+\frac{199}{255}a^{9}-\frac{22}{5}a^{8}+\frac{1334}{255}a^{7}+\frac{116}{85}a^{6}-\frac{5756}{765}a^{5}+\frac{7513}{765}a^{4}-\frac{3221}{255}a^{3}+\frac{4399}{765}a^{2}-\frac{239}{255}a-\frac{251}{85}$, $\frac{47}{153}a^{13}-\frac{1472}{765}a^{12}+\frac{446}{85}a^{11}-\frac{6194}{765}a^{10}+\frac{185}{17}a^{9}-\frac{1554}{85}a^{8}+\frac{7699}{255}a^{7}-\frac{3093}{85}a^{6}+\frac{4933}{153}a^{5}-\frac{16972}{765}a^{4}+\frac{521}{85}a^{3}+\frac{106}{45}a^{2}-\frac{1319}{255}a+\frac{118}{85}$, $\frac{47}{153}a^{13}-\frac{1583}{765}a^{12}+\frac{104}{17}a^{11}-\frac{8018}{765}a^{10}+\frac{252}{17}a^{9}-\frac{2036}{85}a^{8}+\frac{1979}{51}a^{7}-\frac{4266}{85}a^{6}+\frac{7723}{153}a^{5}-\frac{30388}{765}a^{4}+\frac{302}{17}a^{3}+\frac{521}{765}a^{2}-\frac{370}{51}a+\frac{281}{85}$, $\frac{218}{765}a^{13}-\frac{1522}{765}a^{12}+\frac{308}{51}a^{11}-\frac{7918}{765}a^{10}+\frac{209}{15}a^{9}-\frac{1899}{85}a^{8}+\frac{1933}{51}a^{7}-\frac{4181}{85}a^{6}+\frac{35848}{765}a^{5}-\frac{1561}{45}a^{4}+\frac{4112}{255}a^{3}-\frac{362}{765}a^{2}-\frac{286}{51}a+\frac{251}{85}$, $\frac{52}{45}a^{13}-\frac{5206}{765}a^{12}+\frac{285}{17}a^{11}-\frac{16819}{765}a^{10}+\frac{2408}{85}a^{9}-\frac{4587}{85}a^{8}+\frac{4435}{51}a^{7}-\frac{449}{5}a^{6}+\frac{52219}{765}a^{5}-\frac{31916}{765}a^{4}-\frac{78}{85}a^{3}+\frac{11104}{765}a^{2}-\frac{581}{51}a-\frac{362}{85}$, $\frac{48}{85}a^{13}-\frac{203}{51}a^{12}+\frac{61}{5}a^{11}-\frac{5431}{255}a^{10}+\frac{7487}{255}a^{9}-\frac{801}{17}a^{8}+\frac{6686}{85}a^{7}-\frac{8746}{85}a^{6}+\frac{8633}{85}a^{5}-\frac{4045}{51}a^{4}+\frac{3328}{85}a^{3}-\frac{566}{255}a^{2}-\frac{2888}{255}a+\frac{696}{85}$, $\frac{48}{85}a^{13}-\frac{857}{255}a^{12}+\frac{721}{85}a^{11}-\frac{2984}{255}a^{10}+\frac{1314}{85}a^{9}-\frac{141}{5}a^{8}+\frac{3868}{85}a^{7}-\frac{4224}{85}a^{6}+\frac{3443}{85}a^{5}-\frac{6697}{255}a^{4}+\frac{297}{85}a^{3}+\frac{1262}{255}a^{2}-\frac{543}{85}a-\frac{131}{85}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 13575.407460757579 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 13575.407460757579 \cdot 1}{2\cdot\sqrt{4466153794705739173}}\cr\approx \mathstrut & 0.790487928739484 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^14 - 7*x^13 + 22*x^12 - 41*x^11 + 61*x^10 - 96*x^9 + 156*x^8 - 213*x^7 + 230*x^6 - 197*x^5 + 119*x^4 - 40*x^3 - 13*x^2 + 18*x - 9) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^14 - 7*x^13 + 22*x^12 - 41*x^11 + 61*x^10 - 96*x^9 + 156*x^8 - 213*x^7 + 230*x^6 - 197*x^5 + 119*x^4 - 40*x^3 - 13*x^2 + 18*x - 9, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - 7*x^13 + 22*x^12 - 41*x^11 + 61*x^10 - 96*x^9 + 156*x^8 - 213*x^7 + 230*x^6 - 197*x^5 + 119*x^4 - 40*x^3 - 13*x^2 + 18*x - 9); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - 7*x^13 + 22*x^12 - 41*x^11 + 61*x^10 - 96*x^9 + 156*x^8 - 213*x^7 + 230*x^6 - 197*x^5 + 119*x^4 - 40*x^3 - 13*x^2 + 18*x - 9); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{14}$ (as 14T3):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 28
The 10 conjugacy class representatives for $D_{14}$
Character table for $D_{14}$

Intermediate fields

\(\Q(\sqrt{37}) \), 7.1.347428927.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 28
Degree 14 sibling: 14.0.2293430327011055251.1
Minimal sibling: 14.0.2293430327011055251.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.14.0.1}{14} }$ ${\href{/padicField/3.2.0.1}{2} }^{6}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ ${\href{/padicField/5.2.0.1}{2} }^{7}$ ${\href{/padicField/7.7.0.1}{7} }^{2}$ ${\href{/padicField/11.7.0.1}{7} }^{2}$ ${\href{/padicField/13.14.0.1}{14} }$ ${\href{/padicField/17.2.0.1}{2} }^{7}$ R ${\href{/padicField/23.2.0.1}{2} }^{7}$ ${\href{/padicField/29.14.0.1}{14} }$ ${\href{/padicField/31.14.0.1}{14} }$ R ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{7}$ ${\href{/padicField/47.7.0.1}{7} }^{2}$ ${\href{/padicField/53.2.0.1}{2} }^{6}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.14.0.1}{14} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(19\) Copy content Toggle raw display 19.2.1.0a1.1$x^{2} + 18 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
19.2.2.2a1.2$x^{4} + 36 x^{3} + 328 x^{2} + 72 x + 23$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
19.2.2.2a1.2$x^{4} + 36 x^{3} + 328 x^{2} + 72 x + 23$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
19.2.2.2a1.2$x^{4} + 36 x^{3} + 328 x^{2} + 72 x + 23$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
\(37\) Copy content Toggle raw display 37.1.2.1a1.1$x^{2} + 37$$2$$1$$1$$C_2$$$[\ ]_{2}$$
37.2.2.2a1.2$x^{4} + 66 x^{3} + 1093 x^{2} + 132 x + 41$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
37.2.2.2a1.2$x^{4} + 66 x^{3} + 1093 x^{2} + 132 x + 41$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
37.2.2.2a1.2$x^{4} + 66 x^{3} + 1093 x^{2} + 132 x + 41$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
*28 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
*28 1.37.2t1.a.a$1$ $ 37 $ \(\Q(\sqrt{37}) \) $C_2$ (as 2T1) $1$ $1$
1.703.2t1.a.a$1$ $ 19 \cdot 37 $ \(\Q(\sqrt{-703}) \) $C_2$ (as 2T1) $1$ $-1$
1.19.2t1.a.a$1$ $ 19 $ \(\Q(\sqrt{-19}) \) $C_2$ (as 2T1) $1$ $-1$
*28 2.703.14t3.a.b$2$ $ 19 \cdot 37 $ 14.2.4466153794705739173.1 $D_{14}$ (as 14T3) $1$ $0$
*28 2.703.7t2.a.c$2$ $ 19 \cdot 37 $ 7.1.347428927.1 $D_{7}$ (as 7T2) $1$ $0$
*28 2.703.7t2.a.b$2$ $ 19 \cdot 37 $ 7.1.347428927.1 $D_{7}$ (as 7T2) $1$ $0$
*28 2.703.7t2.a.a$2$ $ 19 \cdot 37 $ 7.1.347428927.1 $D_{7}$ (as 7T2) $1$ $0$
*28 2.703.14t3.a.a$2$ $ 19 \cdot 37 $ 14.2.4466153794705739173.1 $D_{14}$ (as 14T3) $1$ $0$
*28 2.703.14t3.a.c$2$ $ 19 \cdot 37 $ 14.2.4466153794705739173.1 $D_{14}$ (as 14T3) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)