Normalized defining polynomial
\( x^{14} - 3 x^{12} - 6 x^{11} + 16 x^{10} + x^{9} - 3 x^{8} - 34 x^{7} + 37 x^{6} - 10 x^{5} + 14 x^{4} + \cdots - 1 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[2, 6]$ |
| |
| Discriminant: |
\(117244558738203125\)
\(\medspace = 5^{7}\cdot 107^{6}\)
|
| |
| Root discriminant: | \(16.57\) |
| |
| Galois root discriminant: | $5^{1/2}107^{1/2}\approx 23.130067012440755$ | ||
| Ramified primes: |
\(5\), \(107\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{8}-\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{3}$, $\frac{1}{9}a^{12}+\frac{1}{9}a^{11}-\frac{1}{9}a^{9}-\frac{1}{9}a^{7}+\frac{2}{9}a^{6}-\frac{4}{9}a^{5}+\frac{4}{9}a^{4}-\frac{2}{9}a^{3}-\frac{4}{9}a^{2}+\frac{1}{3}a+\frac{2}{9}$, $\frac{1}{243}a^{13}-\frac{13}{243}a^{12}+\frac{4}{243}a^{11}+\frac{23}{243}a^{10}-\frac{40}{243}a^{9}+\frac{35}{243}a^{8}+\frac{28}{243}a^{7}+\frac{88}{243}a^{6}+\frac{4}{9}a^{5}+\frac{44}{243}a^{4}+\frac{10}{27}a^{3}-\frac{43}{243}a^{2}+\frac{53}{243}a+\frac{56}{243}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{188}{243}a^{13}+\frac{202}{243}a^{12}-\frac{409}{243}a^{11}-\frac{1670}{243}a^{10}+\frac{1255}{243}a^{9}+\frac{2044}{243}a^{8}+\frac{1484}{243}a^{7}-\frac{5299}{243}a^{6}+\frac{7}{3}a^{5}-\frac{17}{243}a^{4}+\frac{266}{27}a^{3}+\frac{1501}{243}a^{2}-\frac{2672}{243}a-\frac{218}{243}$, $\frac{14}{243}a^{13}-\frac{47}{243}a^{12}-\frac{133}{243}a^{11}-\frac{83}{243}a^{10}+\frac{601}{243}a^{9}+\frac{4}{243}a^{8}-\frac{391}{243}a^{7}-\frac{1090}{243}a^{6}+\frac{16}{3}a^{5}-\frac{221}{243}a^{4}+\frac{47}{27}a^{3}-\frac{413}{243}a^{2}-\frac{554}{243}a+\frac{406}{243}$, $\frac{32}{81}a^{13}+\frac{16}{81}a^{12}-\frac{88}{81}a^{11}-\frac{236}{81}a^{10}+\frac{394}{81}a^{9}+\frac{229}{81}a^{8}+\frac{32}{81}a^{7}-\frac{1045}{81}a^{6}+8a^{5}-\frac{131}{81}a^{4}+\frac{41}{9}a^{3}+\frac{109}{81}a^{2}-\frac{437}{81}a+\frac{118}{81}$, $\frac{151}{243}a^{13}+\frac{35}{243}a^{12}-\frac{557}{243}a^{11}-\frac{1306}{243}a^{10}+\frac{2006}{243}a^{9}+\frac{1478}{243}a^{8}+\frac{286}{243}a^{7}-\frac{5801}{243}a^{6}+\frac{92}{9}a^{5}-\frac{187}{243}a^{4}+\frac{310}{27}a^{3}+\frac{500}{243}a^{2}-\frac{3094}{243}a+\frac{464}{243}$, $\frac{56}{243}a^{13}+\frac{1}{243}a^{12}-\frac{262}{243}a^{11}-\frac{494}{243}a^{10}+\frac{1000}{243}a^{9}+\frac{988}{243}a^{8}-\frac{214}{243}a^{7}-\frac{2929}{243}a^{6}+\frac{14}{9}a^{5}+\frac{925}{243}a^{4}+\frac{146}{27}a^{3}+\frac{751}{243}a^{2}-\frac{1811}{243}a-\frac{104}{243}$, $\frac{115}{243}a^{13}+\frac{98}{243}a^{12}-\frac{215}{243}a^{11}-\frac{838}{243}a^{10}+\frac{1016}{243}a^{9}+\frac{623}{243}a^{8}+\frac{655}{243}a^{7}-\frac{2975}{243}a^{6}+\frac{71}{9}a^{5}-\frac{961}{243}a^{4}+\frac{157}{27}a^{3}+\frac{185}{243}a^{2}-\frac{1438}{243}a+\frac{878}{243}$, $\frac{109}{243}a^{13}-\frac{13}{243}a^{12}-\frac{428}{243}a^{11}-\frac{814}{243}a^{10}+\frac{1850}{243}a^{9}+\frac{737}{243}a^{8}-\frac{377}{243}a^{7}-\frac{4691}{243}a^{6}+13a^{5}-\frac{118}{243}a^{4}+\frac{238}{27}a^{3}-\frac{745}{243}a^{2}-\frac{2566}{243}a+\frac{731}{243}$
|
| |
| Regulator: | \( 1181.3184922748676 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 1181.3184922748676 \cdot 1}{2\cdot\sqrt{117244558738203125}}\cr\approx \mathstrut & 0.424550992027155 \end{aligned}\]
Galois group
| A solvable group of order 28 |
| The 10 conjugacy class representatives for $D_{14}$ |
| Character table for $D_{14}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 7.1.153130375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 28 |
| Degree 14 sibling: | 14.0.2509033556997546875.1 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.14.0.1}{14} }$ | ${\href{/padicField/3.2.0.1}{2} }^{7}$ | R | ${\href{/padicField/7.14.0.1}{14} }$ | ${\href{/padicField/11.7.0.1}{7} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{7}$ | ${\href{/padicField/17.14.0.1}{14} }$ | ${\href{/padicField/19.7.0.1}{7} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{7}$ | ${\href{/padicField/29.7.0.1}{7} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{7}$ | ${\href{/padicField/41.7.0.1}{7} }^{2}$ | ${\href{/padicField/43.14.0.1}{14} }$ | ${\href{/padicField/47.2.0.1}{2} }^{7}$ | ${\href{/padicField/53.2.0.1}{2} }^{7}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(107\)
| 107.2.1.0a1.1 | $x^{2} + 103 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 107.2.2.2a1.2 | $x^{4} + 206 x^{3} + 10613 x^{2} + 412 x + 111$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 107.2.2.2a1.2 | $x^{4} + 206 x^{3} + 10613 x^{2} + 412 x + 111$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 107.2.2.2a1.2 | $x^{4} + 206 x^{3} + 10613 x^{2} + 412 x + 111$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *28 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *28 | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.535.2t1.a.a | $1$ | $ 5 \cdot 107 $ | \(\Q(\sqrt{-535}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.107.2t1.a.a | $1$ | $ 107 $ | \(\Q(\sqrt{-107}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| *28 | 2.535.14t3.a.c | $2$ | $ 5 \cdot 107 $ | 14.2.117244558738203125.1 | $D_{14}$ (as 14T3) | $1$ | $0$ |
| *28 | 2.535.7t2.a.c | $2$ | $ 5 \cdot 107 $ | 7.1.153130375.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
| *28 | 2.535.7t2.a.b | $2$ | $ 5 \cdot 107 $ | 7.1.153130375.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
| *28 | 2.535.7t2.a.a | $2$ | $ 5 \cdot 107 $ | 7.1.153130375.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
| *28 | 2.535.14t3.a.b | $2$ | $ 5 \cdot 107 $ | 14.2.117244558738203125.1 | $D_{14}$ (as 14T3) | $1$ | $0$ |
| *28 | 2.535.14t3.a.a | $2$ | $ 5 \cdot 107 $ | 14.2.117244558738203125.1 | $D_{14}$ (as 14T3) | $1$ | $0$ |