Normalized defining polynomial
\( x^{14} + x^{12} - 32 x^{11} - 24 x^{10} - 6 x^{9} + 233 x^{8} + 150 x^{7} - 227 x^{6} + 122 x^{5} + \cdots + 253 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[0, 7]$ |
| |
| Discriminant: |
\(-6747833004465577869943\)
\(\medspace = -\,7^{7}\cdot 449^{6}\)
|
| |
| Root discriminant: | \(36.24\) |
| |
| Galois root discriminant: | $7^{1/2}449^{6/7}\approx 496.48144995398695$ | ||
| Ramified primes: |
\(7\), \(449\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$: | $C_7$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-7}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{33\cdots 99}a^{13}+\frac{13\cdots 64}{33\cdots 99}a^{12}+\frac{42\cdots 77}{33\cdots 99}a^{11}-\frac{14\cdots 32}{33\cdots 99}a^{10}+\frac{62\cdots 63}{33\cdots 99}a^{9}+\frac{13\cdots 14}{33\cdots 99}a^{8}+\frac{53\cdots 23}{33\cdots 99}a^{7}+\frac{49\cdots 24}{30\cdots 09}a^{6}+\frac{45\cdots 90}{33\cdots 99}a^{5}-\frac{18\cdots 46}{33\cdots 99}a^{4}+\frac{13\cdots 93}{33\cdots 99}a^{3}+\frac{12\cdots 00}{33\cdots 99}a^{2}+\frac{34\cdots 96}{33\cdots 99}a+\frac{10\cdots 09}{30\cdots 09}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{19\cdots 83}{33\cdots 99}a^{13}-\frac{13\cdots 39}{33\cdots 99}a^{12}+\frac{29\cdots 54}{33\cdots 99}a^{11}-\frac{64\cdots 52}{33\cdots 99}a^{10}-\frac{85\cdots 31}{33\cdots 99}a^{9}-\frac{12\cdots 25}{33\cdots 99}a^{8}+\frac{46\cdots 84}{33\cdots 99}a^{7}-\frac{32\cdots 89}{30\cdots 09}a^{6}-\frac{40\cdots 23}{33\cdots 99}a^{5}+\frac{52\cdots 68}{33\cdots 99}a^{4}+\frac{68\cdots 73}{33\cdots 99}a^{3}+\frac{92\cdots 86}{33\cdots 99}a^{2}+\frac{44\cdots 46}{33\cdots 99}a+\frac{73\cdots 30}{30\cdots 09}$, $\frac{28\cdots 92}{33\cdots 99}a^{13}-\frac{21\cdots 10}{33\cdots 99}a^{12}+\frac{44\cdots 11}{33\cdots 99}a^{11}-\frac{94\cdots 20}{33\cdots 99}a^{10}+\frac{13\cdots 52}{33\cdots 99}a^{9}-\frac{18\cdots 75}{33\cdots 99}a^{8}+\frac{67\cdots 09}{33\cdots 99}a^{7}-\frac{64\cdots 98}{30\cdots 09}a^{6}-\frac{59\cdots 83}{33\cdots 99}a^{5}+\frac{77\cdots 45}{33\cdots 99}a^{4}+\frac{99\cdots 71}{33\cdots 99}a^{3}+\frac{13\cdots 77}{33\cdots 99}a^{2}+\frac{60\cdots 06}{33\cdots 99}a+\frac{88\cdots 30}{30\cdots 09}$, $\frac{11\cdots 24}{33\cdots 99}a^{13}-\frac{45\cdots 31}{33\cdots 99}a^{12}+\frac{14\cdots 79}{33\cdots 99}a^{11}-\frac{38\cdots 57}{33\cdots 99}a^{10}-\frac{13\cdots 35}{33\cdots 99}a^{9}-\frac{46\cdots 02}{33\cdots 99}a^{8}+\frac{27\cdots 00}{33\cdots 99}a^{7}+\frac{60\cdots 27}{30\cdots 09}a^{6}-\frac{27\cdots 22}{33\cdots 99}a^{5}+\frac{23\cdots 48}{33\cdots 99}a^{4}+\frac{41\cdots 24}{33\cdots 99}a^{3}+\frac{67\cdots 96}{33\cdots 99}a^{2}+\frac{40\cdots 67}{33\cdots 99}a+\frac{80\cdots 21}{30\cdots 09}$, $\frac{12\cdots 52}{33\cdots 99}a^{13}-\frac{12\cdots 30}{33\cdots 99}a^{12}+\frac{22\cdots 93}{33\cdots 99}a^{11}-\frac{41\cdots 63}{33\cdots 99}a^{10}+\frac{11\cdots 37}{33\cdots 99}a^{9}-\frac{11\cdots 16}{33\cdots 99}a^{8}+\frac{29\cdots 48}{33\cdots 99}a^{7}-\frac{90\cdots 27}{30\cdots 09}a^{6}-\frac{22\cdots 79}{33\cdots 99}a^{5}+\frac{41\cdots 16}{33\cdots 99}a^{4}+\frac{40\cdots 90}{33\cdots 99}a^{3}+\frac{46\cdots 89}{33\cdots 99}a^{2}+\frac{15\cdots 78}{33\cdots 99}a+\frac{12\cdots 60}{30\cdots 09}$, $\frac{55\cdots 70}{33\cdots 99}a^{13}-\frac{50\cdots 58}{33\cdots 99}a^{12}+\frac{98\cdots 63}{33\cdots 99}a^{11}-\frac{18\cdots 76}{33\cdots 99}a^{10}+\frac{33\cdots 57}{33\cdots 99}a^{9}-\frac{56\cdots 22}{33\cdots 99}a^{8}+\frac{13\cdots 11}{33\cdots 99}a^{7}-\frac{33\cdots 91}{30\cdots 09}a^{6}-\frac{99\cdots 09}{33\cdots 99}a^{5}+\frac{16\cdots 43}{33\cdots 99}a^{4}+\frac{19\cdots 96}{33\cdots 99}a^{3}+\frac{23\cdots 35}{33\cdots 99}a^{2}+\frac{97\cdots 40}{33\cdots 99}a+\frac{13\cdots 60}{30\cdots 09}$, $\frac{13\cdots 53}{33\cdots 99}a^{13}-\frac{78\cdots 05}{33\cdots 99}a^{12}+\frac{17\cdots 26}{33\cdots 99}a^{11}-\frac{43\cdots 48}{33\cdots 99}a^{10}-\frac{63\cdots 34}{33\cdots 99}a^{9}-\frac{29\cdots 16}{33\cdots 99}a^{8}+\frac{31\cdots 36}{33\cdots 99}a^{7}+\frac{15\cdots 81}{30\cdots 09}a^{6}-\frac{32\cdots 88}{33\cdots 99}a^{5}+\frac{35\cdots 67}{33\cdots 99}a^{4}+\frac{47\cdots 35}{33\cdots 99}a^{3}+\frac{68\cdots 83}{33\cdots 99}a^{2}+\frac{32\cdots 79}{33\cdots 99}a+\frac{46\cdots 96}{30\cdots 09}$
|
| |
| Regulator: | \( 142818.9972337937 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 142818.9972337937 \cdot 1}{2\cdot\sqrt{6747833004465577869943}}\cr\approx \mathstrut & 0.336072440098390 \end{aligned}\] (assuming GRH)
Galois group
$C_7\times D_7$ (as 14T8):
| A solvable group of order 98 |
| The 35 conjugacy class representatives for $C_7 \wr C_2$ |
| Character table for $C_7 \wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 siblings: | deg 14, deg 14 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }^{2}$ | ${\href{/padicField/3.14.0.1}{14} }$ | ${\href{/padicField/5.14.0.1}{14} }$ | R | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{7}$ | ${\href{/padicField/13.14.0.1}{14} }$ | ${\href{/padicField/17.14.0.1}{14} }$ | ${\href{/padicField/19.14.0.1}{14} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{7}$ | ${\href{/padicField/29.7.0.1}{7} }^{2}$ | ${\href{/padicField/31.14.0.1}{14} }$ | ${\href{/padicField/37.7.0.1}{7} }^{2}$ | ${\href{/padicField/41.14.0.1}{14} }$ | ${\href{/padicField/43.7.0.1}{7} }^{2}$ | ${\href{/padicField/47.14.0.1}{14} }$ | ${\href{/padicField/53.7.0.1}{7} }^{2}$ | ${\href{/padicField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| 7.7.2.7a1.2 | $x^{14} + 12 x^{8} + 8 x^{7} + 36 x^{2} + 48 x + 23$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ |
|
\(449\)
| Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ | |
| Deg $7$ | $7$ | $1$ | $6$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *98 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *98 | 1.7.2t1.a.a | $1$ | $ 7 $ | \(\Q(\sqrt{-7}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.3143.14t1.a.e | $1$ | $ 7 \cdot 449 $ | 14.0.55289463034905217395671571187569636343.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.3143.14t1.a.b | $1$ | $ 7 \cdot 449 $ | 14.0.55289463034905217395671571187569636343.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.449.7t1.a.e | $1$ | $ 449 $ | 7.7.8193662024284801.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.449.7t1.a.a | $1$ | $ 449 $ | 7.7.8193662024284801.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.3143.14t1.a.c | $1$ | $ 7 \cdot 449 $ | 14.0.55289463034905217395671571187569636343.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.449.7t1.a.f | $1$ | $ 449 $ | 7.7.8193662024284801.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.449.7t1.a.b | $1$ | $ 449 $ | 7.7.8193662024284801.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.3143.14t1.a.d | $1$ | $ 7 \cdot 449 $ | 14.0.55289463034905217395671571187569636343.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.3143.14t1.a.a | $1$ | $ 7 \cdot 449 $ | 14.0.55289463034905217395671571187569636343.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.449.7t1.a.d | $1$ | $ 449 $ | 7.7.8193662024284801.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.3143.14t1.a.f | $1$ | $ 7 \cdot 449 $ | 14.0.55289463034905217395671571187569636343.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.449.7t1.a.c | $1$ | $ 449 $ | 7.7.8193662024284801.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| *98 | 2.3143.14t8.a.c | $2$ | $ 7 \cdot 449 $ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| *98 | 2.3143.14t8.a.e | $2$ | $ 7 \cdot 449 $ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.1411207.14t8.a.d | $2$ | $ 7 \cdot 449^{2}$ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.1411207.7t2.a.b | $2$ | $ 7 \cdot 449^{2}$ | 7.1.2810426074329686743.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| 2.1411207.14t8.b.a | $2$ | $ 7 \cdot 449^{2}$ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.1411207.14t8.a.a | $2$ | $ 7 \cdot 449^{2}$ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.1411207.14t8.a.b | $2$ | $ 7 \cdot 449^{2}$ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.3143.14t8.a.a | $2$ | $ 7 \cdot 449 $ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.1411207.14t8.a.c | $2$ | $ 7 \cdot 449^{2}$ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.1411207.14t8.b.b | $2$ | $ 7 \cdot 449^{2}$ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.1411207.14t8.b.d | $2$ | $ 7 \cdot 449^{2}$ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.1411207.7t2.a.c | $2$ | $ 7 \cdot 449^{2}$ | 7.1.2810426074329686743.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| 2.1411207.14t8.a.e | $2$ | $ 7 \cdot 449^{2}$ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.1411207.14t8.a.f | $2$ | $ 7 \cdot 449^{2}$ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.3143.14t8.a.b | $2$ | $ 7 \cdot 449 $ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| *98 | 2.3143.14t8.a.d | $2$ | $ 7 \cdot 449 $ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.1411207.14t8.b.f | $2$ | $ 7 \cdot 449^{2}$ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.1411207.14t8.b.e | $2$ | $ 7 \cdot 449^{2}$ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.1411207.14t8.b.c | $2$ | $ 7 \cdot 449^{2}$ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.3143.14t8.a.f | $2$ | $ 7 \cdot 449 $ | 14.0.6747833004465577869943.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.1411207.7t2.a.a | $2$ | $ 7 \cdot 449^{2}$ | 7.1.2810426074329686743.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |