Normalized defining polynomial
\( x^{14} - x^{13} - 2 x^{12} + 12 x^{11} + 81 x^{10} - 203 x^{9} + 477 x^{8} - 1135 x^{7} + 2043 x^{6} + \cdots + 67 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[0, 7]$ |
| |
| Discriminant: |
\(-57279935167251554465599\)
\(\medspace = -\,31^{7}\cdot 113^{6}\)
|
| |
| Root discriminant: | \(42.23\) |
| |
| Galois root discriminant: | $31^{1/2}113^{6/7}\approx 320.2302614292546$ | ||
| Ramified primes: |
\(31\), \(113\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-31}) \) | ||
| $\Aut(K/\Q)$: | $C_7$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-31}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{48\cdots 93}a^{13}-\frac{10\cdots 91}{48\cdots 93}a^{12}+\frac{86\cdots 57}{48\cdots 93}a^{11}+\frac{11\cdots 12}{48\cdots 93}a^{10}+\frac{20\cdots 84}{48\cdots 93}a^{9}+\frac{30\cdots 92}{48\cdots 93}a^{8}+\frac{12\cdots 07}{48\cdots 93}a^{7}-\frac{17\cdots 08}{48\cdots 93}a^{6}+\frac{18\cdots 19}{48\cdots 93}a^{5}-\frac{30\cdots 50}{48\cdots 93}a^{4}-\frac{13\cdots 01}{48\cdots 93}a^{3}+\frac{10\cdots 69}{48\cdots 93}a^{2}-\frac{42\cdots 49}{48\cdots 93}a-\frac{55\cdots 31}{48\cdots 93}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}$, which has order $3$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}$, which has order $3$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{60\cdots 67}{48\cdots 93}a^{13}-\frac{64\cdots 85}{48\cdots 93}a^{12}-\frac{15\cdots 11}{48\cdots 93}a^{11}+\frac{71\cdots 00}{48\cdots 93}a^{10}+\frac{49\cdots 72}{48\cdots 93}a^{9}-\frac{13\cdots 04}{48\cdots 93}a^{8}+\frac{25\cdots 08}{48\cdots 93}a^{7}-\frac{68\cdots 51}{48\cdots 93}a^{6}+\frac{11\cdots 77}{48\cdots 93}a^{5}-\frac{12\cdots 41}{48\cdots 93}a^{4}+\frac{83\cdots 39}{48\cdots 93}a^{3}-\frac{40\cdots 02}{48\cdots 93}a^{2}+\frac{13\cdots 43}{48\cdots 93}a-\frac{52\cdots 37}{48\cdots 93}$, $\frac{22\cdots 27}{48\cdots 93}a^{13}-\frac{16\cdots 28}{48\cdots 93}a^{12}-\frac{43\cdots 84}{48\cdots 93}a^{11}+\frac{25\cdots 67}{48\cdots 93}a^{10}+\frac{18\cdots 79}{48\cdots 93}a^{9}-\frac{39\cdots 26}{48\cdots 93}a^{8}+\frac{10\cdots 08}{48\cdots 93}a^{7}-\frac{24\cdots 52}{48\cdots 93}a^{6}+\frac{42\cdots 44}{48\cdots 93}a^{5}-\frac{49\cdots 73}{48\cdots 93}a^{4}+\frac{39\cdots 47}{48\cdots 93}a^{3}-\frac{24\cdots 46}{48\cdots 93}a^{2}+\frac{11\cdots 72}{48\cdots 93}a-\frac{31\cdots 77}{48\cdots 93}$, $\frac{92\cdots 90}{48\cdots 93}a^{13}-\frac{25\cdots 89}{48\cdots 93}a^{12}-\frac{21\cdots 21}{48\cdots 93}a^{11}+\frac{94\cdots 73}{48\cdots 93}a^{10}+\frac{81\cdots 07}{48\cdots 93}a^{9}-\frac{12\cdots 11}{48\cdots 93}a^{8}+\frac{33\cdots 67}{48\cdots 93}a^{7}-\frac{79\cdots 08}{48\cdots 93}a^{6}+\frac{12\cdots 15}{48\cdots 93}a^{5}-\frac{12\cdots 02}{48\cdots 93}a^{4}+\frac{71\cdots 10}{48\cdots 93}a^{3}-\frac{37\cdots 79}{48\cdots 93}a^{2}+\frac{19\cdots 96}{48\cdots 93}a-\frac{68\cdots 68}{48\cdots 93}$, $\frac{46\cdots 88}{48\cdots 93}a^{13}+\frac{15\cdots 55}{48\cdots 93}a^{12}-\frac{10\cdots 87}{48\cdots 93}a^{11}+\frac{39\cdots 40}{48\cdots 93}a^{10}+\frac{44\cdots 55}{48\cdots 93}a^{9}-\frac{38\cdots 84}{48\cdots 93}a^{8}+\frac{13\cdots 98}{48\cdots 93}a^{7}-\frac{31\cdots 19}{48\cdots 93}a^{6}+\frac{42\cdots 44}{48\cdots 93}a^{5}-\frac{30\cdots 03}{48\cdots 93}a^{4}+\frac{14\cdots 40}{48\cdots 93}a^{3}-\frac{74\cdots 49}{48\cdots 93}a^{2}+\frac{45\cdots 68}{48\cdots 93}a-\frac{91\cdots 89}{48\cdots 93}$, $\frac{35\cdots 35}{48\cdots 93}a^{13}-\frac{11\cdots 48}{48\cdots 93}a^{12}-\frac{64\cdots 79}{48\cdots 93}a^{11}+\frac{37\cdots 62}{48\cdots 93}a^{10}+\frac{30\cdots 36}{48\cdots 93}a^{9}-\frac{49\cdots 09}{48\cdots 93}a^{8}+\frac{14\cdots 75}{48\cdots 93}a^{7}-\frac{32\cdots 81}{48\cdots 93}a^{6}+\frac{55\cdots 41}{48\cdots 93}a^{5}-\frac{60\cdots 85}{48\cdots 93}a^{4}+\frac{47\cdots 50}{48\cdots 93}a^{3}-\frac{25\cdots 99}{48\cdots 93}a^{2}+\frac{90\cdots 37}{48\cdots 93}a-\frac{39\cdots 24}{48\cdots 93}$, $\frac{48\cdots 14}{48\cdots 93}a^{13}-\frac{33\cdots 60}{48\cdots 93}a^{12}-\frac{13\cdots 64}{48\cdots 93}a^{11}+\frac{52\cdots 21}{48\cdots 93}a^{10}+\frac{41\cdots 01}{48\cdots 93}a^{9}-\frac{87\cdots 64}{48\cdots 93}a^{8}+\frac{17\cdots 40}{48\cdots 93}a^{7}-\frac{47\cdots 50}{48\cdots 93}a^{6}+\frac{76\cdots 41}{48\cdots 93}a^{5}-\frac{77\cdots 13}{48\cdots 93}a^{4}+\frac{45\cdots 92}{48\cdots 93}a^{3}-\frac{22\cdots 82}{48\cdots 93}a^{2}+\frac{12\cdots 52}{48\cdots 93}a-\frac{43\cdots 74}{48\cdots 93}$
|
| |
| Regulator: | \( 59474.987942609085 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 59474.987942609085 \cdot 3}{2\cdot\sqrt{57279935167251554465599}}\cr\approx \mathstrut & 0.144106457201682 \end{aligned}\] (assuming GRH)
Galois group
$C_7\times D_7$ (as 14T8):
| A solvable group of order 98 |
| The 35 conjugacy class representatives for $C_7 \wr C_2$ |
| Character table for $C_7 \wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 siblings: | deg 14, deg 14 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }^{2}$ | ${\href{/padicField/3.14.0.1}{14} }$ | ${\href{/padicField/5.7.0.1}{7} }^{2}$ | ${\href{/padicField/7.7.0.1}{7} }^{2}$ | ${\href{/padicField/11.14.0.1}{14} }$ | ${\href{/padicField/13.14.0.1}{14} }$ | ${\href{/padicField/17.14.0.1}{14} }$ | ${\href{/padicField/19.7.0.1}{7} }^{2}$ | ${\href{/padicField/23.14.0.1}{14} }$ | ${\href{/padicField/29.14.0.1}{14} }$ | R | ${\href{/padicField/37.14.0.1}{14} }$ | ${\href{/padicField/41.7.0.1}{7} }^{2}$ | ${\href{/padicField/43.14.0.1}{14} }$ | ${\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{7}$ | ${\href{/padicField/53.14.0.1}{14} }$ | ${\href{/padicField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(31\)
| 31.7.2.7a1.2 | $x^{14} + 2 x^{8} + 56 x^{7} + x^{2} + 56 x + 815$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ |
|
\(113\)
| 113.7.1.0a1.1 | $x^{7} + 5 x + 110$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ |
| 113.1.7.6a1.5 | $x^{7} + 3051$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *98 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *98 | 1.31.2t1.a.a | $1$ | $ 31 $ | \(\Q(\sqrt{-31}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.113.7t1.a.a | $1$ | $ 113 $ | 7.7.2081951752609.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.113.7t1.a.d | $1$ | $ 113 $ | 7.7.2081951752609.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.3503.14t1.a.b | $1$ | $ 31 \cdot 113 $ | 14.0.119254061410789267361233458448997791.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.113.7t1.a.c | $1$ | $ 113 $ | 7.7.2081951752609.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.3503.14t1.a.e | $1$ | $ 31 \cdot 113 $ | 14.0.119254061410789267361233458448997791.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.3503.14t1.a.a | $1$ | $ 31 \cdot 113 $ | 14.0.119254061410789267361233458448997791.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.3503.14t1.a.f | $1$ | $ 31 \cdot 113 $ | 14.0.119254061410789267361233458448997791.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.113.7t1.a.f | $1$ | $ 113 $ | 7.7.2081951752609.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.113.7t1.a.b | $1$ | $ 113 $ | 7.7.2081951752609.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.113.7t1.a.e | $1$ | $ 113 $ | 7.7.2081951752609.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.3503.14t1.a.d | $1$ | $ 31 \cdot 113 $ | 14.0.119254061410789267361233458448997791.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.3503.14t1.a.c | $1$ | $ 31 \cdot 113 $ | 14.0.119254061410789267361233458448997791.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 2.395839.14t8.a.a | $2$ | $ 31 \cdot 113^{2}$ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.395839.7t2.a.c | $2$ | $ 31 \cdot 113^{2}$ | 7.1.62023424661974719.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| 2.395839.14t8.a.c | $2$ | $ 31 \cdot 113^{2}$ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.395839.14t8.b.d | $2$ | $ 31 \cdot 113^{2}$ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.395839.14t8.a.b | $2$ | $ 31 \cdot 113^{2}$ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.395839.14t8.a.d | $2$ | $ 31 \cdot 113^{2}$ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.3503.14t8.a.e | $2$ | $ 31 \cdot 113 $ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| *98 | 2.3503.14t8.a.d | $2$ | $ 31 \cdot 113 $ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.395839.14t8.a.e | $2$ | $ 31 \cdot 113^{2}$ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.395839.14t8.b.a | $2$ | $ 31 \cdot 113^{2}$ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.395839.7t2.a.b | $2$ | $ 31 \cdot 113^{2}$ | 7.1.62023424661974719.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| 2.395839.14t8.b.e | $2$ | $ 31 \cdot 113^{2}$ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.395839.14t8.b.c | $2$ | $ 31 \cdot 113^{2}$ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.395839.14t8.b.b | $2$ | $ 31 \cdot 113^{2}$ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.3503.14t8.a.b | $2$ | $ 31 \cdot 113 $ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.395839.14t8.a.f | $2$ | $ 31 \cdot 113^{2}$ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.395839.14t8.b.f | $2$ | $ 31 \cdot 113^{2}$ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.3503.14t8.a.c | $2$ | $ 31 \cdot 113 $ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.395839.7t2.a.a | $2$ | $ 31 \cdot 113^{2}$ | 7.1.62023424661974719.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| *98 | 2.3503.14t8.a.a | $2$ | $ 31 \cdot 113 $ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| *98 | 2.3503.14t8.a.f | $2$ | $ 31 \cdot 113 $ | 14.0.57279935167251554465599.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |