Normalized defining polynomial
\( x^{14} - x^{13} + 217 x^{12} + 239 x^{11} + 15033 x^{10} + 42167 x^{9} + 447988 x^{8} + 1691539 x^{7} + 7469613 x^{6} + 26563459 x^{5} + 71615373 x^{4} + 183273867 x^{3} + 308477505 x^{2} + 377213368 x + 356178109 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3094745824656233782531059200463=-\,3^{7}\cdot 7^{7}\cdot 43^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $150.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(903=3\cdot 7\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{903}(64,·)$, $\chi_{903}(1,·)$, $\chi_{903}(419,·)$, $\chi_{903}(484,·)$, $\chi_{903}(902,·)$, $\chi_{903}(839,·)$, $\chi_{903}(776,·)$, $\chi_{903}(778,·)$, $\chi_{903}(524,·)$, $\chi_{903}(274,·)$, $\chi_{903}(629,·)$, $\chi_{903}(379,·)$, $\chi_{903}(125,·)$, $\chi_{903}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} - \frac{2}{7} a^{9} - \frac{2}{7} a^{7} - \frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{2}{7} a^{3} + \frac{2}{7} a^{2}$, $\frac{1}{7} a^{11} + \frac{3}{7} a^{9} - \frac{2}{7} a^{8} + \frac{2}{7} a^{7} + \frac{2}{7} a^{6} + \frac{1}{7} a^{5} + \frac{2}{7} a^{4} - \frac{1}{7} a^{3} - \frac{3}{7} a^{2}$, $\frac{1}{553} a^{12} + \frac{2}{553} a^{11} + \frac{8}{553} a^{10} - \frac{167}{553} a^{9} - \frac{65}{553} a^{8} + \frac{220}{553} a^{7} - \frac{34}{79} a^{6} - \frac{228}{553} a^{5} + \frac{10}{553} a^{4} - \frac{142}{553} a^{3} - \frac{150}{553} a^{2} + \frac{24}{79} a + \frac{13}{79}$, $\frac{1}{18555403797243500097531069858961719089609129244277} a^{13} + \frac{10757308804754315830403189204988537301801796116}{18555403797243500097531069858961719089609129244277} a^{12} - \frac{440151715441990050065542369544699911796262952260}{18555403797243500097531069858961719089609129244277} a^{11} + \frac{65673265833883108203229934157510652942113888794}{18555403797243500097531069858961719089609129244277} a^{10} + \frac{8420481694972864803053543582786600492619940518524}{18555403797243500097531069858961719089609129244277} a^{9} - \frac{530025173343918505239565164940301367091940696749}{2650771971034785728218724265565959869944161320611} a^{8} + \frac{2311790652717317212307981367027110051177121564475}{18555403797243500097531069858961719089609129244277} a^{7} - \frac{43615700385127420398831204571256313283964297942}{2650771971034785728218724265565959869944161320611} a^{6} + \frac{3424206168977502705531088811569214630313130803788}{18555403797243500097531069858961719089609129244277} a^{5} + \frac{7703248872053133174718399690127271476600474251430}{18555403797243500097531069858961719089609129244277} a^{4} - \frac{75113412563873166105473171640010925545071188696}{234878529079031646804190757708376191007710496763} a^{3} + \frac{4171980549801950934947982379282541543593330982461}{18555403797243500097531069858961719089609129244277} a^{2} - \frac{228630348339212579272338447854850847610351009476}{2650771971034785728218724265565959869944161320611} a + \frac{826971830792764982747094068071122144708628787709}{2650771971034785728218724265565959869944161320611}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{904}$, which has order $115712$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.64185055774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-903}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $43$ | 43.14.13.11 | $x^{14} + 205667667$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |