Properties

Label 13.1.51185893014090757.1
Degree $13$
Signature $[1, 6]$
Discriminant $5.119\times 10^{16}$
Root discriminant \(19.29\)
Ramified prime $13$
Class number $1$
Class group trivial
Galois group $C_{13}:C_4$ (as 13T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^13 - 13*x^8 + 39*x^7 - 78*x^6 + 117*x^5 - 130*x^4 + 104*x^3 - 65*x^2 + 26*x - 5)
 
Copy content gp:K = bnfinit(y^13 - 13*y^8 + 39*y^7 - 78*y^6 + 117*y^5 - 130*y^4 + 104*y^3 - 65*y^2 + 26*y - 5, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^13 - 13*x^8 + 39*x^7 - 78*x^6 + 117*x^5 - 130*x^4 + 104*x^3 - 65*x^2 + 26*x - 5);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^13 - 13*x^8 + 39*x^7 - 78*x^6 + 117*x^5 - 130*x^4 + 104*x^3 - 65*x^2 + 26*x - 5)
 

\( x^{13} - 13x^{8} + 39x^{7} - 78x^{6} + 117x^{5} - 130x^{4} + 104x^{3} - 65x^{2} + 26x - 5 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $13$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[1, 6]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(51185893014090757\) \(\medspace = 13^{15}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(19.29\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $13^{63/52}\approx 22.365840080473813$
Ramified primes:   \(13\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{13}) \)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{34}a^{10}-\frac{3}{17}a^{9}+\frac{6}{17}a^{8}-\frac{15}{34}a^{7}+\frac{1}{34}a^{6}+\frac{11}{34}a^{5}-\frac{2}{17}a^{4}-\frac{7}{17}a^{3}+\frac{3}{34}a^{2}+\frac{9}{34}a+\frac{3}{17}$, $\frac{1}{34}a^{11}-\frac{7}{34}a^{9}-\frac{11}{34}a^{8}+\frac{13}{34}a^{7}+\frac{11}{34}a^{5}+\frac{13}{34}a^{4}-\frac{13}{34}a^{3}-\frac{7}{34}a^{2}+\frac{9}{34}a-\frac{15}{34}$, $\frac{1}{578}a^{12}+\frac{3}{289}a^{11}+\frac{1}{289}a^{10}+\frac{131}{578}a^{9}+\frac{21}{578}a^{8}+\frac{181}{578}a^{7}+\frac{27}{289}a^{6}+\frac{38}{289}a^{5}+\frac{63}{578}a^{4}+\frac{197}{578}a^{3}+\frac{31}{289}a^{2}-\frac{127}{289}a+\frac{67}{289}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $6$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{157}{578}a^{12}+\frac{80}{289}a^{11}+\frac{21}{289}a^{10}-\frac{71}{578}a^{9}-\frac{35}{578}a^{8}-\frac{1945}{578}a^{7}+\frac{2080}{289}a^{6}-\frac{3299}{289}a^{5}+\frac{8327}{578}a^{4}-\frac{7117}{578}a^{3}+\frac{1994}{289}a^{2}-\frac{984}{289}a+\frac{251}{289}$, $\frac{29}{289}a^{12}+\frac{25}{578}a^{11}+\frac{99}{578}a^{10}+\frac{135}{578}a^{9}-\frac{57}{578}a^{8}-\frac{480}{289}a^{7}+\frac{1959}{578}a^{6}-\frac{2267}{289}a^{5}+\frac{7037}{578}a^{4}-\frac{6679}{578}a^{3}+\frac{2036}{289}a^{2}-\frac{804}{289}a-\frac{201}{578}$, $\frac{141}{578}a^{12}-\frac{53}{289}a^{11}-\frac{109}{578}a^{10}+\frac{13}{289}a^{9}+\frac{71}{578}a^{8}-\frac{899}{289}a^{7}+\frac{3467}{289}a^{6}-\frac{6797}{289}a^{5}+\frac{10162}{289}a^{4}-\frac{21999}{578}a^{3}+\frac{15967}{578}a^{2}-\frac{3865}{289}a+\frac{1639}{578}$, $\frac{195}{289}a^{12}+\frac{351}{578}a^{11}+\frac{118}{289}a^{10}+\frac{73}{578}a^{9}-\frac{157}{578}a^{8}-\frac{5485}{578}a^{7}+\frac{5056}{289}a^{6}-\frac{20187}{578}a^{5}+\frac{26321}{578}a^{4}-\frac{23215}{578}a^{3}+\frac{16241}{578}a^{2}-\frac{7413}{578}a+\frac{1379}{578}$, $\frac{25}{578}a^{12}+\frac{99}{578}a^{11}+\frac{135}{578}a^{10}-\frac{57}{578}a^{9}-\frac{103}{289}a^{8}-\frac{303}{578}a^{7}-\frac{5}{289}a^{6}+\frac{251}{578}a^{5}+\frac{861}{578}a^{4}-\frac{980}{289}a^{3}+\frac{1081}{289}a^{2}-\frac{2287}{578}a+\frac{434}{289}$, $\frac{183}{578}a^{12}-\frac{80}{289}a^{11}-\frac{127}{578}a^{10}+\frac{95}{289}a^{9}+\frac{205}{578}a^{8}-\frac{1212}{289}a^{7}+\frac{4550}{289}a^{6}-\frac{9468}{289}a^{5}+\frac{13168}{289}a^{4}-\frac{27971}{578}a^{3}+\frac{18673}{578}a^{2}-\frac{3232}{289}a+\frac{841}{578}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2655.34526727 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{6}\cdot 2655.34526727 \cdot 1}{2\cdot\sqrt{51185893014090757}}\cr\approx \mathstrut & 0.722146094854 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^13 - 13*x^8 + 39*x^7 - 78*x^6 + 117*x^5 - 130*x^4 + 104*x^3 - 65*x^2 + 26*x - 5) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^13 - 13*x^8 + 39*x^7 - 78*x^6 + 117*x^5 - 130*x^4 + 104*x^3 - 65*x^2 + 26*x - 5, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^13 - 13*x^8 + 39*x^7 - 78*x^6 + 117*x^5 - 130*x^4 + 104*x^3 - 65*x^2 + 26*x - 5); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^13 - 13*x^8 + 39*x^7 - 78*x^6 + 117*x^5 - 130*x^4 + 104*x^3 - 65*x^2 + 26*x - 5); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{13}:C_4$ (as 13T4):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 52
The 7 conjugacy class representatives for $C_{13}:C_4$
Character table for $C_{13}:C_4$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 26 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{3}{,}\,{\href{/padicField/2.1.0.1}{1} }$ ${\href{/padicField/3.13.0.1}{13} }$ ${\href{/padicField/5.4.0.1}{4} }^{3}{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.4.0.1}{4} }^{3}{,}\,{\href{/padicField/11.1.0.1}{1} }$ R ${\href{/padicField/17.2.0.1}{2} }^{6}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.2.0.1}{2} }^{6}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.13.0.1}{13} }$ ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.4.0.1}{4} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.4.0.1}{4} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.2.0.1}{2} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.4.0.1}{4} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.13.0.1}{13} }$ ${\href{/padicField/59.4.0.1}{4} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display 13.1.13.15a1.4$x^{13} + 117 x^{3} + 13$$13$$1$$15$$C_{13}:C_4$$$[\frac{5}{4}]_{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)