Normalized defining polynomial
\( x^{13} - 4 x^{12} + 10 x^{11} - 25 x^{10} + 52 x^{9} - 75 x^{8} + 90 x^{7} - 113 x^{6} + 114 x^{5} + \cdots - 10 \)
Invariants
| Degree: | $13$ |
| |
| Signature: | $[1, 6]$ |
| |
| Discriminant: |
\(101439097511492601\)
\(\medspace = 3^{6}\cdot 7^{8}\cdot 17^{6}\)
|
| |
| Root discriminant: | \(20.33\) |
| |
| Galois root discriminant: | $3^{1/2}7^{2/3}17^{1/2}\approx 26.132669826287227$ | ||
| Ramified primes: |
\(3\), \(7\), \(17\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}+\frac{1}{3}a^{8}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{9}a^{11}+\frac{2}{9}a^{8}-\frac{1}{3}a^{7}+\frac{1}{9}a^{6}-\frac{2}{9}a^{5}+\frac{4}{9}a^{4}-\frac{1}{3}a^{3}+\frac{4}{9}a-\frac{1}{9}$, $\frac{1}{9137277}a^{12}-\frac{360289}{9137277}a^{11}+\frac{59423}{1015253}a^{10}+\frac{911597}{9137277}a^{9}+\frac{1650913}{9137277}a^{8}-\frac{3067700}{9137277}a^{7}+\frac{479381}{1015253}a^{6}+\frac{492733}{1015253}a^{5}-\frac{920389}{9137277}a^{4}-\frac{199771}{3045759}a^{3}+\frac{3537187}{9137277}a^{2}-\frac{1120514}{9137277}a-\frac{3862208}{9137277}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{432005}{9137277}a^{12}-\frac{419258}{3045759}a^{11}+\frac{361010}{1015253}a^{10}-\frac{8268233}{9137277}a^{9}+\frac{5288383}{3045759}a^{8}-\frac{21540010}{9137277}a^{7}+\frac{28061420}{9137277}a^{6}-\frac{34639075}{9137277}a^{5}+\frac{3386368}{1015253}a^{4}-\frac{6581108}{3045759}a^{3}+\frac{3859322}{9137277}a^{2}+\frac{11071348}{9137277}a-\frac{1012007}{3045759}$, $\frac{4249}{1015253}a^{12}+\frac{186814}{9137277}a^{11}-\frac{239066}{3045759}a^{10}+\frac{185458}{1015253}a^{9}-\frac{5004784}{9137277}a^{8}+\frac{1191220}{1015253}a^{7}-\frac{13883930}{9137277}a^{6}+\frac{15867817}{9137277}a^{5}-\frac{22140311}{9137277}a^{4}+\frac{6427532}{3045759}a^{3}-\frac{2924053}{3045759}a^{2}+\frac{3238003}{9137277}a+\frac{7356071}{9137277}$, $\frac{1254055}{9137277}a^{12}-\frac{4179305}{9137277}a^{11}+\frac{1155318}{1015253}a^{10}-\frac{26773297}{9137277}a^{9}+\frac{53104928}{9137277}a^{8}-\frac{72932165}{9137277}a^{7}+\frac{91673633}{9137277}a^{6}-\frac{116220541}{9137277}a^{5}+\frac{103928545}{9137277}a^{4}-\frac{5750142}{1015253}a^{3}+\frac{8001757}{9137277}a^{2}+\frac{12220271}{3045759}a+\frac{4608287}{9137277}$, $\frac{48957}{1015253}a^{12}-\frac{1027571}{9137277}a^{11}+\frac{186682}{1015253}a^{10}-\frac{452298}{1015253}a^{9}+\frac{5260229}{9137277}a^{8}+\frac{931664}{3045759}a^{7}-\frac{11898608}{9137277}a^{6}+\frac{15621751}{9137277}a^{5}-\frac{30111968}{9137277}a^{4}+\frac{16979525}{3045759}a^{3}-\frac{5701263}{1015253}a^{2}+\frac{30895396}{9137277}a+\frac{18887819}{9137277}$, $\frac{384920}{9137277}a^{12}-\frac{642613}{3045759}a^{11}+\frac{466323}{1015253}a^{10}-\frac{9977150}{9137277}a^{9}+\frac{7526420}{3045759}a^{8}-\frac{30097603}{9137277}a^{7}+\frac{29205737}{9137277}a^{6}-\frac{44767852}{9137277}a^{5}+\frac{5917182}{1015253}a^{4}-\frac{1550704}{1015253}a^{3}-\frac{5534212}{9137277}a^{2}-\frac{12530432}{9137277}a-\frac{2383571}{3045759}$, $\frac{293817}{1015253}a^{12}-\frac{7730287}{9137277}a^{11}+\frac{5922503}{3045759}a^{10}-\frac{15219916}{3045759}a^{9}+\frac{84988264}{9137277}a^{8}-\frac{10950030}{1015253}a^{7}+\frac{115908875}{9137277}a^{6}-\frac{152588842}{9137277}a^{5}+\frac{112808570}{9137277}a^{4}-\frac{2867401}{1015253}a^{3}-\frac{2426743}{1015253}a^{2}+\frac{90970382}{9137277}a+\frac{33301231}{9137277}$
|
| |
| Regulator: | \( 4878.48838792 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{6}\cdot 4878.48838792 \cdot 1}{2\cdot\sqrt{101439097511492601}}\cr\approx \mathstrut & 0.942457548881 \end{aligned}\]
Galois group
$C_{13}:C_6$ (as 13T5):
| A solvable group of order 78 |
| The 8 conjugacy class representatives for $C_{13}:C_6$ |
| Character table for $C_{13}:C_6$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 26 sibling: | data not computed |
| Degree 39 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.6.0.1}{6} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | R | ${\href{/padicField/5.3.0.1}{3} }^{4}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | ${\href{/padicField/11.3.0.1}{3} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.13.0.1}{13} }$ | R | ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.3.0.1}{3} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.13.0.1}{13} }$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.13.0.1}{13} }$ | ${\href{/padicField/43.13.0.1}{13} }$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 3.3.2.3a1.1 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 7 x + 1$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
| 3.3.2.3a1.1 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 7 x + 1$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(7\)
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 7.2.3.4a1.2 | $x^{6} + 18 x^{5} + 117 x^{4} + 324 x^{3} + 351 x^{2} + 162 x + 34$ | $3$ | $2$ | $4$ | $C_6$ | $$[\ ]_{3}^{2}$$ | |
| 7.2.3.4a1.2 | $x^{6} + 18 x^{5} + 117 x^{4} + 324 x^{3} + 351 x^{2} + 162 x + 34$ | $3$ | $2$ | $4$ | $C_6$ | $$[\ ]_{3}^{2}$$ | |
|
\(17\)
| $\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 17.3.2.3a1.1 | $x^{6} + 2 x^{4} + 28 x^{3} + x^{2} + 45 x + 196$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
| 17.3.2.3a1.1 | $x^{6} + 2 x^{4} + 28 x^{3} + x^{2} + 45 x + 196$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |