Normalized defining polynomial
\( x^{12} - 6 x^{11} + 9 x^{10} + 9 x^{9} - 33 x^{8} + 30 x^{7} - 10 x^{6} - 48 x^{5} + 78 x^{4} + 3 x^{3} + \cdots + 1 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[8, 2]$ |
| |
| Discriminant: |
\(1130350095703125\)
\(\medspace = 3^{14}\cdot 5^{9}\cdot 11^{2}\)
|
| |
| Root discriminant: | \(17.97\) |
| |
| Galois root discriminant: | $3^{25/18}5^{3/4}11^{1/2}\approx 51.00259285125494$ | ||
| Ramified primes: |
\(3\), \(5\), \(11\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{119719}a^{11}+\frac{44774}{119719}a^{10}+\frac{45636}{119719}a^{9}-\frac{23241}{119719}a^{8}-\frac{14746}{119719}a^{7}+\frac{44154}{119719}a^{6}+\frac{56825}{119719}a^{5}-\frac{3893}{119719}a^{4}-\frac{17598}{119719}a^{3}-\frac{47979}{119719}a^{2}-\frac{22476}{119719}a+\frac{2350}{119719}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1263}{6301}a^{11}-\frac{8214}{6301}a^{10}+\frac{15623}{6301}a^{9}+\frac{2976}{6301}a^{8}-\frac{42549}{6301}a^{7}+\frac{59361}{6301}a^{6}-\frac{42522}{6301}a^{5}-\frac{39885}{6301}a^{4}+\frac{117072}{6301}a^{3}-\frac{51168}{6301}a^{2}-\frac{13785}{6301}a+\frac{12881}{6301}$, $\frac{60073}{119719}a^{11}+\frac{377428}{119719}a^{10}-\frac{644642}{119719}a^{9}-\frac{365542}{119719}a^{8}+\frac{2070800}{119719}a^{7}-\frac{2363458}{119719}a^{6}+\frac{1336250}{119719}a^{5}+\frac{2447362}{119719}a^{4}-\frac{5341471}{119719}a^{3}+\frac{1324451}{119719}a^{2}+\frac{1087337}{119719}a-\frac{22849}{119719}$, $\frac{5822}{119719}a^{11}+\frac{73754}{119719}a^{10}-\frac{275769}{119719}a^{9}+\frac{266070}{119719}a^{8}+\frac{491565}{119719}a^{7}-\frac{1225085}{119719}a^{6}+\frac{1145637}{119719}a^{5}-\frac{321002}{119719}a^{4}-\frac{1939412}{119719}a^{3}+\frac{2303972}{119719}a^{2}+\frac{2405}{119719}a-\frac{273172}{119719}$, $\frac{35686}{119719}a^{11}-\frac{204248}{119719}a^{10}+\frac{268177}{119719}a^{9}+\frac{394063}{119719}a^{8}-\frac{1138222}{119719}a^{7}+\frac{895918}{119719}a^{6}-\frac{63191}{119719}a^{5}-\frac{1967062}{119719}a^{4}+\frac{2557745}{119719}a^{3}+\frac{401701}{119719}a^{2}-\frac{1278145}{119719}a+\frac{58800}{119719}$, $\frac{636}{6301}a^{11}-\frac{4256}{6301}a^{10}+\frac{8391}{6301}a^{9}+\frac{870}{6301}a^{8}-\frac{21471}{6301}a^{7}+\frac{29892}{6301}a^{6}-\frac{20739}{6301}a^{5}-\frac{18558}{6301}a^{4}+\frac{54957}{6301}a^{3}-\frac{24105}{6301}a^{2}-\frac{16670}{6301}a+\frac{1263}{6301}$, $\frac{18175}{119719}a^{11}+\frac{82312}{119719}a^{10}-\frac{21068}{119719}a^{9}-\frac{322614}{119719}a^{8}+\frac{316866}{119719}a^{7}+\frac{97226}{119719}a^{6}-\frac{337719}{119719}a^{5}+\frac{1078817}{119719}a^{4}-\frac{284956}{119719}a^{3}-\frac{1331780}{119719}a^{2}+\frac{259510}{119719}a+\frac{28433}{119719}$, $\frac{64119}{119719}a^{11}+\frac{356671}{119719}a^{10}-\frac{441762}{119719}a^{9}-\frac{671028}{119719}a^{8}+\frac{1753897}{119719}a^{7}-\frac{1432042}{119719}a^{6}+\frac{444747}{119719}a^{5}+\frac{2994127}{119719}a^{4}-\frac{3696702}{119719}a^{3}-\frac{771956}{119719}a^{2}+\frac{919074}{119719}a+\frac{166290}{119719}$, $\frac{14825}{119719}a^{11}-\frac{67305}{119719}a^{10}+\frac{21631}{119719}a^{9}+\frac{242895}{119719}a^{8}-\frac{241994}{119719}a^{7}-\frac{40442}{119719}a^{6}+\frac{207460}{119719}a^{5}-\frac{727481}{119719}a^{4}+\frac{97070}{119719}a^{3}+\frac{799937}{119719}a^{2}-\frac{28723}{119719}a-\frac{238917}{119719}$, $\frac{1263}{6301}a^{11}+\frac{8214}{6301}a^{10}-\frac{15623}{6301}a^{9}-\frac{2976}{6301}a^{8}+\frac{42549}{6301}a^{7}-\frac{59361}{6301}a^{6}+\frac{42522}{6301}a^{5}+\frac{39885}{6301}a^{4}-\frac{117072}{6301}a^{3}+\frac{51168}{6301}a^{2}+\frac{20086}{6301}a-\frac{12881}{6301}$
|
| |
| Regulator: | \( 1589.3897461008255 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{2}\cdot 1589.3897461008255 \cdot 1}{2\cdot\sqrt{1130350095703125}}\cr\approx \mathstrut & 0.238887610015920 \end{aligned}\]
Galois group
$S_3^2:C_4$ (as 12T79):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $S_3^2:C_4$ |
| Character table for $S_3^2:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 6.4.5011875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | R | R | ${\href{/padicField/7.12.0.1}{12} }$ | R | ${\href{/padicField/13.12.0.1}{12} }$ | ${\href{/padicField/17.12.0.1}{12} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.4.0.1}{4} }^{3}$ | ${\href{/padicField/53.4.0.1}{4} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.6.14a1.2 | $x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2630 x^{6} + 3303 x^{5} + 3240 x^{4} + 2462 x^{3} + 1410 x^{2} + 567 x + 124$ | $6$ | $2$ | $14$ | $(C_3\times C_3):C_4$ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{2}$$ |
|
\(5\)
| 5.1.4.3a1.4 | $x^{4} + 20$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
|
\(11\)
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 11.6.1.0a1.1 | $x^{6} + 3 x^{4} + 4 x^{3} + 6 x^{2} + 7 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |