Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $79$ | |
| Group : | $S_3^2:C_4$ | |
| CHM label : | $[S(3)^{2}]4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,6,10)(4,8,12), (2,10)(4,8), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ 72: $C_3^2:D_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: $C_3^2:D_4$
Low degree siblings
12T79, 12T80 x 2, 24T213, 24T215, 24T265 x 2, 24T266 x 2, 24T267, 24T268, 36T156 x 2, 36T158, 36T164Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 4,12)( 6,10)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3,11)( 4,12)( 5, 9)( 6,10)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 4, 8,12)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $12$ | $6$ | $( 2, 6,10)( 3,11)( 4, 8,12)( 5, 9)$ |
| $ 4, 4, 4 $ | $18$ | $4$ | $( 1, 2, 3, 4)( 5, 6,11,12)( 7, 8, 9,10)$ |
| $ 12 $ | $12$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 2, 7, 8)( 3, 4, 9,10)( 5, 6,11,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 3)( 2, 4)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 6, 2, 2, 2 $ | $12$ | $6$ | $( 1, 3)( 2, 4, 6, 8,10,12)( 5,11)( 7, 9)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2, 8)( 4,10)( 5,11)( 6,12)( 7, 9)$ |
| $ 6, 2, 2, 2 $ | $4$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 8)( 4,10)( 6,12)$ |
| $ 4, 4, 4 $ | $18$ | $4$ | $( 1, 4, 3, 2)( 5,12,11, 6)( 7,10, 9, 8)$ |
| $ 12 $ | $12$ | $12$ | $( 1, 4,11, 6, 9, 8, 7,10, 5,12, 3, 2)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
Group invariants
| Order: | $144=2^{4} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [144, 115] |
| Character table: |
2 4 3 4 2 2 3 2 3 4 2 2 3 2 3 2 3 2 4
3 2 1 . 2 1 . 1 1 . 1 2 1 2 . 1 1 2 2
1a 2a 2b 3a 6a 4a 12a 4b 2c 6b 6c 2d 6d 4c 12b 4d 3b 2e
2P 1a 1a 1a 3a 3a 2c 6c 2e 1a 3a 3b 1a 3a 2c 6c 2e 3b 1a
3P 1a 2a 2b 1a 2a 4c 4d 4d 2c 2d 2e 2d 2e 4a 4b 4b 1a 2e
5P 1a 2a 2b 3a 6a 4a 12a 4b 2c 6b 6c 2d 6d 4c 12b 4d 3b 2e
7P 1a 2a 2b 3a 6a 4c 12b 4d 2c 6b 6c 2d 6d 4a 12a 4b 3b 2e
11P 1a 2a 2b 3a 6a 4c 12b 4d 2c 6b 6c 2d 6d 4a 12a 4b 3b 2e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 -1 1 1 1 -1 1 -1 1 -1 1 1 1 1
X.3 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1
X.4 1 1 1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 1 1
X.5 1 -1 1 1 -1 A -A -A -1 1 -1 1 -1 -A A A 1 -1
X.6 1 -1 1 1 -1 -A A A -1 1 -1 1 -1 A -A -A 1 -1
X.7 1 1 1 1 1 A A A -1 -1 -1 -1 -1 -A -A -A 1 -1
X.8 1 1 1 1 1 -A -A -A -1 -1 -1 -1 -1 A A A 1 -1
X.9 2 . -2 2 . . . . -2 . 2 . 2 . . . 2 2
X.10 2 . -2 2 . . . . 2 . -2 . -2 . . . 2 -2
X.11 4 -2 . 1 1 . . . . -1 2 2 -1 . . . -2 -4
X.12 4 -2 . 1 1 . . . . 1 -2 -2 1 . . . -2 4
X.13 4 . . -2 . . -1 2 . . 1 . -2 . -1 2 1 4
X.14 4 . . -2 . . 1 -2 . . 1 . -2 . 1 -2 1 4
X.15 4 2 . 1 -1 . . . . -1 -2 2 1 . . . -2 4
X.16 4 2 . 1 -1 . . . . 1 2 -2 -1 . . . -2 -4
X.17 4 . . -2 . . A B . . -1 . 2 . -A -B 1 -4
X.18 4 . . -2 . . -A -B . . -1 . 2 . A B 1 -4
A = -E(4)
= -Sqrt(-1) = -i
B = 2*E(4)
= 2*Sqrt(-1) = 2i
|