Normalized defining polynomial
\( x^{12} - 12x^{10} + 48x^{8} - 96x^{6} + 108x^{4} + 144x^{2} - 144 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[6, 3]$ |
| |
| Discriminant: |
\(-82170781731127296\)
\(\medspace = -\,2^{34}\cdot 3^{14}\)
|
| |
| Root discriminant: | \(25.68\) |
| |
| Galois root discriminant: | $2^{59/16}3^{25/18}\approx 59.25384244131698$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{12}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{12}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{12}a^{8}$, $\frac{1}{24}a^{9}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{1344}a^{10}-\frac{3}{224}a^{8}+\frac{11}{336}a^{6}-\frac{1}{4}a^{5}+\frac{13}{56}a^{4}-\frac{1}{2}a^{3}+\frac{3}{16}a^{2}-\frac{1}{2}a-\frac{1}{56}$, $\frac{1}{2688}a^{11}-\frac{3}{448}a^{9}-\frac{1}{24}a^{8}-\frac{17}{672}a^{7}+\frac{13}{112}a^{5}-\frac{5}{32}a^{3}-\frac{1}{112}a-\frac{1}{2}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{96}a^{10}-\frac{5}{48}a^{8}+\frac{7}{24}a^{6}-\frac{1}{4}a^{4}-\frac{3}{8}a^{2}+\frac{11}{4}$, $\frac{1}{84}a^{10}-\frac{11}{84}a^{8}+\frac{37}{84}a^{6}-\frac{11}{14}a^{4}+\frac{3}{2}a^{2}-\frac{2}{7}$, $\frac{23}{2688}a^{11}-\frac{1}{168}a^{10}-\frac{151}{1344}a^{9}+\frac{11}{168}a^{8}+\frac{337}{672}a^{7}-\frac{11}{42}a^{6}-\frac{121}{112}a^{5}+\frac{9}{14}a^{4}+\frac{45}{32}a^{3}-\frac{1}{2}a^{2}+\frac{89}{112}a-\frac{5}{14}$, $\frac{5}{896}a^{11}-\frac{5}{672}a^{10}-\frac{79}{1344}a^{9}+\frac{31}{336}a^{8}+\frac{137}{672}a^{7}-\frac{55}{168}a^{6}-\frac{57}{112}a^{5}+\frac{5}{28}a^{4}+\frac{21}{32}a^{3}+\frac{9}{8}a^{2}+\frac{209}{112}a-\frac{65}{28}$, $\frac{1}{2688}a^{11}+\frac{5}{1344}a^{10}-\frac{3}{448}a^{9}-\frac{17}{672}a^{8}+\frac{13}{224}a^{7}-\frac{1}{336}a^{6}-\frac{15}{112}a^{5}+\frac{9}{56}a^{4}-\frac{5}{32}a^{3}-\frac{1}{16}a^{2}+\frac{55}{112}a+\frac{23}{56}$, $\frac{31}{1344}a^{11}+\frac{29}{1344}a^{10}-\frac{167}{672}a^{9}-\frac{149}{672}a^{8}+\frac{95}{112}a^{7}+\frac{235}{336}a^{6}-\frac{87}{56}a^{5}-\frac{71}{56}a^{4}+\frac{21}{16}a^{3}+\frac{15}{16}a^{2}+\frac{221}{56}a+\frac{195}{56}$, $\frac{1}{128}a^{11}+\frac{1}{96}a^{10}-\frac{19}{192}a^{9}-\frac{7}{48}a^{8}+\frac{15}{32}a^{7}+\frac{17}{24}a^{6}-\frac{21}{16}a^{5}-\frac{7}{4}a^{4}+\frac{71}{32}a^{3}+\frac{25}{8}a^{2}-\frac{19}{16}a-\frac{7}{4}$, $\frac{1}{1344}a^{11}-\frac{13}{1344}a^{10}-\frac{3}{224}a^{9}+\frac{61}{672}a^{8}+\frac{13}{112}a^{7}-\frac{29}{112}a^{6}-\frac{29}{56}a^{5}+\frac{27}{56}a^{4}+\frac{19}{16}a^{3}-\frac{7}{16}a^{2}-\frac{85}{56}a-\frac{43}{56}$
|
| |
| Regulator: | \( 25238.0448986 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{3}\cdot 25238.0448986 \cdot 1}{2\cdot\sqrt{82170781731127296}}\cr\approx \mathstrut & 0.698854205065 \end{aligned}\]
Galois group
$S_4\wr C_2$ (as 12T201):
| A solvable group of order 1152 |
| The 20 conjugacy class representatives for $S_4\wr C_2$ |
| Character table for $S_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 6.4.5971968.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 8.2.195689447424.7 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{6}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.2.6a1.5 | $x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 7$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ |
| 2.1.8.28a1.8 | $x^{8} + 4 x^{6} + 8 x^{5} + 24 x^{4} + 2$ | $8$ | $1$ | $28$ | $(C_4^2 : C_2):C_2$ | $$[2, 2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$$ | |
|
\(3\)
| 3.2.6.14a1.2 | $x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2630 x^{6} + 3303 x^{5} + 3240 x^{4} + 2462 x^{3} + 1410 x^{2} + 567 x + 124$ | $6$ | $2$ | $14$ | $(C_3\times C_3):C_4$ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{2}$$ |