Properties

Label 12.4.657...368.16
Degree $12$
Signature $[4, 4]$
Discriminant $6.574\times 10^{17}$
Root discriminant \(30.54\)
Ramified primes $2,3$
Class number $1$
Class group trivial
Galois group $C_2\times A_4^2:C_4$ (as 12T198)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^10 - 15*x^8 + 96*x^6 + 144*x^4 - 576*x^2 + 288)
 
Copy content gp:K = bnfinit(y^12 - 6*y^10 - 15*y^8 + 96*y^6 + 144*y^4 - 576*y^2 + 288, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 6*x^10 - 15*x^8 + 96*x^6 + 144*x^4 - 576*x^2 + 288);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 6*x^10 - 15*x^8 + 96*x^6 + 144*x^4 - 576*x^2 + 288)
 

\( x^{12} - 6x^{10} - 15x^{8} + 96x^{6} + 144x^{4} - 576x^{2} + 288 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $12$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[4, 4]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(657366253849018368\) \(\medspace = 2^{37}\cdot 3^{14}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(30.54\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{67/16}3^{25/18}\approx 83.79758760322899$
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{2}) \)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{12}a^{6}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{12}a^{7}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{12}a^{8}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{24}a^{9}+\frac{1}{8}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2424}a^{10}+\frac{43}{1212}a^{8}+\frac{19}{2424}a^{6}-\frac{63}{404}a^{4}-\frac{1}{2}a^{3}+\frac{43}{202}a^{2}+\frac{35}{101}$, $\frac{1}{4848}a^{11}+\frac{43}{2424}a^{9}-\frac{61}{1616}a^{7}+\frac{19}{404}a^{5}-\frac{29}{202}a^{3}-\frac{33}{101}a$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  Trivial group, which has order $1$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}$, which has order $2$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $7$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{5}{606}a^{10}-\frac{49}{1212}a^{8}-\frac{107}{606}a^{6}+\frac{255}{404}a^{4}+\frac{228}{101}a^{2}-\frac{209}{101}$, $\frac{109}{4848}a^{11}+\frac{1}{101}a^{10}-\frac{131}{1212}a^{9}-\frac{79}{1212}a^{8}-\frac{2171}{4848}a^{7}-\frac{25}{404}a^{6}+\frac{1213}{808}a^{5}+\frac{153}{202}a^{4}+\frac{1081}{202}a^{3}+\frac{123}{202}a^{2}-\frac{769}{101}a-\frac{271}{101}$, $\frac{109}{4848}a^{11}-\frac{1}{101}a^{10}-\frac{131}{1212}a^{9}+\frac{79}{1212}a^{8}-\frac{2171}{4848}a^{7}+\frac{25}{404}a^{6}+\frac{1213}{808}a^{5}-\frac{153}{202}a^{4}+\frac{1081}{202}a^{3}-\frac{123}{202}a^{2}-\frac{769}{101}a+\frac{271}{101}$, $\frac{23}{4848}a^{11}-\frac{31}{2424}a^{10}-\frac{7}{808}a^{9}+\frac{27}{404}a^{8}-\frac{977}{4848}a^{7}+\frac{421}{2424}a^{6}+\frac{67}{202}a^{5}-\frac{42}{101}a^{4}+\frac{222}{101}a^{3}-\frac{727}{202}a^{2}-\frac{254}{101}a+\frac{329}{101}$, $\frac{29}{1212}a^{11}-\frac{14}{303}a^{10}-\frac{11}{101}a^{9}+\frac{39}{202}a^{8}-\frac{661}{1212}a^{7}+\frac{193}{202}a^{6}+\frac{147}{101}a^{5}-\frac{256}{101}a^{4}+\frac{641}{101}a^{3}-\frac{994}{101}a^{2}-\frac{394}{101}a+\frac{827}{101}$, $\frac{23}{4848}a^{11}+\frac{31}{2424}a^{10}-\frac{7}{808}a^{9}-\frac{27}{404}a^{8}-\frac{977}{4848}a^{7}-\frac{421}{2424}a^{6}+\frac{67}{202}a^{5}+\frac{42}{101}a^{4}+\frac{222}{101}a^{3}+\frac{727}{202}a^{2}-\frac{254}{101}a-\frac{329}{101}$, $\frac{7}{404}a^{11}-\frac{11}{808}a^{10}-\frac{113}{1212}a^{9}+\frac{8}{101}a^{8}-\frac{409}{1212}a^{7}+\frac{787}{2424}a^{6}+\frac{485}{404}a^{5}-\frac{345}{404}a^{4}+\frac{695}{202}a^{3}-\frac{356}{101}a^{2}-\frac{550}{101}a+\frac{461}{101}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 163329.982884 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 163329.982884 \cdot 1}{2\cdot\sqrt{657366253849018368}}\cr\approx \mathstrut & 2.51172260493 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^10 - 15*x^8 + 96*x^6 + 144*x^4 - 576*x^2 + 288) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^12 - 6*x^10 - 15*x^8 + 96*x^6 + 144*x^4 - 576*x^2 + 288, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 6*x^10 - 15*x^8 + 96*x^6 + 144*x^4 - 576*x^2 + 288); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 6*x^10 - 15*x^8 + 96*x^6 + 144*x^4 - 576*x^2 + 288); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times A_4^2:C_4$ (as 12T198):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 1152
The 26 conjugacy class representatives for $C_2\times A_4^2:C_4$
Character table for $C_2\times A_4^2:C_4$

Intermediate fields

\(\Q(\sqrt{2}) \), 6.2.11943936.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: data not computed
Degree 16 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.4.0.1}{4} }^{3}$ ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{3}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }^{3}$ ${\href{/padicField/13.4.0.1}{4} }^{3}$ ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ ${\href{/padicField/29.4.0.1}{4} }^{3}$ ${\href{/padicField/31.6.0.1}{6} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{3}$ ${\href{/padicField/41.3.0.1}{3} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{3}$ ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.4.0.1}{4} }^{3}$ ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.2.3a1.3$x^{2} + 4 x + 2$$2$$1$$3$$C_2$$$[3]$$
2.1.2.3a1.3$x^{2} + 4 x + 2$$2$$1$$3$$C_2$$$[3]$$
2.1.8.31a1.184$x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 50$$8$$1$$31$$(C_8:C_2):C_2$$$[2, 3, \frac{7}{2}, 4, 5]$$
\(3\) Copy content Toggle raw display 3.2.6.14a1.2$x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2630 x^{6} + 3303 x^{5} + 3240 x^{4} + 2462 x^{3} + 1410 x^{2} + 567 x + 124$$6$$2$$14$$(C_3\times C_3):C_4$$$[\frac{3}{2}, \frac{3}{2}]_{2}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)