Show commands: Magma
Group invariants
| Abstract group: | $C_2\times A_4^2:C_4$ |
| |
| Order: | $1152=2^{7} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $12$ |
| |
| Transitive number $t$: | $198$ |
| |
| CHM label: | $1/2[2^{6}]F_{36}$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,12)(2,3)$, $(1,5,9)(4,8,12)$, $(1,6,12,7)(2,8,10,4)(3,9,11,5)$, $(2,10)(3,11)(4,8)(5,9)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $C_4\times C_2$ $36$: $C_3^2:C_4$ $72$: 12T40 $576$: $A_4^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $C_3^2:C_4$
Low degree siblings
12T199, 16T1287, 16T1290, 18T265 x 2, 24T2781, 24T2798, 24T2799, 24T2800, 24T2801, 24T2802, 32T96689, 32T96706 x 2, 36T1664, 36T1665, 36T1666, 36T1667, 36T1707 x 2, 36T1708 x 2, 36T1930, 36T1932Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6}$ | $1$ | $2$ | $6$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| 2B | $2^{2},1^{8}$ | $6$ | $2$ | $2$ | $( 2, 3)(10,11)$ |
| 2C | $2^{4},1^{4}$ | $6$ | $2$ | $4$ | $( 1,12)( 2, 3)( 6, 7)(10,11)$ |
| 2D | $2^{2},1^{8}$ | $9$ | $2$ | $2$ | $( 8, 9)(10,11)$ |
| 2E | $2^{4},1^{4}$ | $9$ | $2$ | $4$ | $( 1,12)( 2, 3)( 8, 9)(10,11)$ |
| 2F | $2^{6}$ | $36$ | $2$ | $6$ | $( 1,12)( 2, 3)( 4, 8)( 5, 9)( 6,10)( 7,11)$ |
| 2G | $2^{4},1^{4}$ | $36$ | $2$ | $4$ | $( 1, 9)( 2,10)( 3,11)( 8,12)$ |
| 3A | $3^{2},1^{6}$ | $16$ | $3$ | $4$ | $( 2, 6,11)( 3, 7,10)$ |
| 3B | $3^{4}$ | $64$ | $3$ | $8$ | $( 1, 9, 5)( 2, 6,11)( 3, 7,10)( 4,12, 8)$ |
| 4A | $4^{2},1^{4}$ | $36$ | $4$ | $6$ | $( 1, 8,12, 9)( 2,11, 3,10)$ |
| 4B | $4^{2},2^{2}$ | $36$ | $4$ | $8$ | $( 1,12)( 2, 3)( 4, 9, 5, 8)( 6,10, 7,11)$ |
| 4C | $4,2^{3},1^{2}$ | $72$ | $4$ | $6$ | $( 1, 5,12, 4)( 2,10)( 3,11)( 6, 7)$ |
| 4D | $4,2^{3},1^{2}$ | $72$ | $4$ | $6$ | $( 1,12)( 2, 7)( 3, 6)( 4, 9, 5, 8)$ |
| 4E1 | $4^{3}$ | $72$ | $4$ | $9$ | $( 1, 3,12, 2)( 4, 7, 8,11)( 5, 6, 9,10)$ |
| 4E-1 | $4^{3}$ | $72$ | $4$ | $9$ | $( 1, 2,12, 3)( 4,11, 8, 7)( 5,10, 9, 6)$ |
| 4F1 | $4^{3}$ | $72$ | $4$ | $9$ | $( 1, 2, 9,11)( 3, 8,10,12)( 4, 6, 5, 7)$ |
| 4F-1 | $4^{3}$ | $72$ | $4$ | $9$ | $( 1,11, 9, 2)( 3,12,10, 8)( 4, 7, 5, 6)$ |
| 6A | $6,2^{3}$ | $16$ | $6$ | $8$ | $( 1,12)( 2,10, 6, 3,11, 7)( 4, 5)( 8, 9)$ |
| 6B | $3^{2},2^{2},1^{2}$ | $48$ | $6$ | $6$ | $( 1, 4, 8)( 2, 3)( 5, 9,12)(10,11)$ |
| 6C | $6,2,1^{4}$ | $48$ | $6$ | $6$ | $( 1,12)( 2, 7,11, 3, 6,10)$ |
| 6D | $6^{2}$ | $64$ | $6$ | $10$ | $( 1, 4, 9,12, 5, 8)( 2,10, 6, 3,11, 7)$ |
| 8A1 | $8,2^{2}$ | $72$ | $8$ | $9$ | $( 1, 2, 8,11,12, 3, 9,10)( 4, 7)( 5, 6)$ |
| 8A-1 | $8,2^{2}$ | $72$ | $8$ | $9$ | $( 1,10, 9, 3,12,11, 8, 2)( 4, 7)( 5, 6)$ |
| 8B1 | $8,2^{2}$ | $72$ | $8$ | $9$ | $( 1, 3, 8,10,12, 2, 9,11)( 4, 6)( 5, 7)$ |
| 8B-1 | $8,2^{2}$ | $72$ | $8$ | $9$ | $( 1,11, 9, 2,12,10, 8, 3)( 4, 6)( 5, 7)$ |
Malle's constant $a(G)$: $1/2$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 4C | 4D | 4E1 | 4E-1 | 4F1 | 4F-1 | 6A | 6B | 6C | 6D | 8A1 | 8A-1 | 8B1 | 8B-1 | ||
| Size | 1 | 1 | 6 | 6 | 9 | 9 | 36 | 36 | 16 | 64 | 36 | 36 | 72 | 72 | 72 | 72 | 72 | 72 | 16 | 48 | 48 | 64 | 72 | 72 | 72 | 72 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 3B | 2E | 2E | 2B | 2B | 2F | 2F | 2F | 2F | 3A | 3A | 3A | 3B | 4A | 4A | 4A | 4A | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 1A | 1A | 4A | 4B | 4C | 4D | 4E-1 | 4E1 | 4F-1 | 4F1 | 2A | 2B | 2C | 2A | 8A-1 | 8A1 | 8B-1 | 8B1 | |
| Type | |||||||||||||||||||||||||||
| 1152.157850.1a | R | ||||||||||||||||||||||||||
| 1152.157850.1b | R | ||||||||||||||||||||||||||
| 1152.157850.1c | R | ||||||||||||||||||||||||||
| 1152.157850.1d | R | ||||||||||||||||||||||||||
| 1152.157850.1e1 | C | ||||||||||||||||||||||||||
| 1152.157850.1e2 | C | ||||||||||||||||||||||||||
| 1152.157850.1f1 | C | ||||||||||||||||||||||||||
| 1152.157850.1f2 | C | ||||||||||||||||||||||||||
| 1152.157850.4a | R | ||||||||||||||||||||||||||
| 1152.157850.4b | R | ||||||||||||||||||||||||||
| 1152.157850.4c | R | ||||||||||||||||||||||||||
| 1152.157850.4d | R | ||||||||||||||||||||||||||
| 1152.157850.6a | R | ||||||||||||||||||||||||||
| 1152.157850.6b | R | ||||||||||||||||||||||||||
| 1152.157850.6c | R | ||||||||||||||||||||||||||
| 1152.157850.6d | R | ||||||||||||||||||||||||||
| 1152.157850.9a | R | ||||||||||||||||||||||||||
| 1152.157850.9b | R | ||||||||||||||||||||||||||
| 1152.157850.9c | R | ||||||||||||||||||||||||||
| 1152.157850.9d | R | ||||||||||||||||||||||||||
| 1152.157850.9e1 | C | ||||||||||||||||||||||||||
| 1152.157850.9e2 | C | ||||||||||||||||||||||||||
| 1152.157850.9f1 | C | ||||||||||||||||||||||||||
| 1152.157850.9f2 | C | ||||||||||||||||||||||||||
| 1152.157850.12a | R | ||||||||||||||||||||||||||
| 1152.157850.12b | R |
Regular extensions
Data not computed