Normalized defining polynomial
\( x^{12} - 4 x^{11} + 4 x^{10} - 16 x^{9} + 84 x^{8} - 152 x^{7} + 192 x^{6} - 384 x^{5} + 283 x^{4} + \cdots - 158 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[4, 4]$ |
| |
| Discriminant: |
\(56593444029595648\)
\(\medspace = 2^{36}\cdot 7^{7}\)
|
| |
| Root discriminant: | \(24.89\) |
| |
| Galois root discriminant: | $2^{27/8}7^{5/6}\approx 52.5078942662214$ | ||
| Ramified primes: |
\(2\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{7}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3459270819}a^{11}-\frac{1065858398}{3459270819}a^{10}-\frac{106650424}{1153090273}a^{9}-\frac{193977064}{3459270819}a^{8}-\frac{922644227}{3459270819}a^{7}-\frac{284456030}{1153090273}a^{6}+\frac{408204125}{1153090273}a^{5}+\frac{469967605}{1153090273}a^{4}-\frac{693688118}{3459270819}a^{3}+\frac{1165465006}{3459270819}a^{2}+\frac{1140281717}{3459270819}a+\frac{87034114}{3459270819}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{138196}{437163}a^{11}-\frac{379703}{437163}a^{10}+\frac{22316}{145721}a^{9}-\frac{2127187}{437163}a^{8}+\frac{8959774}{437163}a^{7}-\frac{3196478}{145721}a^{6}+\frac{4788138}{145721}a^{5}-\frac{11730443}{145721}a^{4}-\frac{5830790}{437163}a^{3}+\frac{98440759}{437163}a^{2}-\frac{87872614}{437163}a+\frac{17301211}{437163}$, $\frac{369963094}{1153090273}a^{11}-\frac{881275450}{1153090273}a^{10}+\frac{50453811}{1153090273}a^{9}-\frac{5863300596}{1153090273}a^{8}+\frac{21590232848}{1153090273}a^{7}-\frac{21206531164}{1153090273}a^{6}+\frac{37157615097}{1153090273}a^{5}-\frac{82334201613}{1153090273}a^{4}-\frac{29045591934}{1153090273}a^{3}+\frac{233558218311}{1153090273}a^{2}-\frac{193064288248}{1153090273}a+\frac{38783273421}{1153090273}$, $\frac{14513351}{28124153}a^{11}-\frac{38986407}{28124153}a^{10}+\frac{7562558}{28124153}a^{9}-\frac{223238191}{28124153}a^{8}+\frac{924851953}{28124153}a^{7}-\frac{1002923344}{28124153}a^{6}+\frac{1497815871}{28124153}a^{5}-\frac{3617495544}{28124153}a^{4}-\frac{589484264}{28124153}a^{3}+\frac{10236508838}{28124153}a^{2}-\frac{9182881481}{28124153}a+\frac{1796586689}{28124153}$, $\frac{472059604}{3459270819}a^{11}-\frac{1182436742}{3459270819}a^{10}-\frac{3302211}{1153090273}a^{9}-\frac{7483729405}{3459270819}a^{8}+\frac{28595882290}{3459270819}a^{7}-\frac{8902832178}{1153090273}a^{6}+\frac{15687339523}{1153090273}a^{5}-\frac{36664342970}{1153090273}a^{4}-\frac{42101284766}{3459270819}a^{3}+\frac{308763337519}{3459270819}a^{2}-\frac{242212112704}{3459270819}a+\frac{45303419887}{3459270819}$, $\frac{412871086}{1153090273}a^{11}-\frac{1149871726}{1153090273}a^{10}+\frac{215732479}{1153090273}a^{9}-\frac{6303534137}{1153090273}a^{8}+\frac{27051034791}{1153090273}a^{7}-\frac{29176330008}{1153090273}a^{6}+\frac{42505144983}{1153090273}a^{5}-\frac{106066949499}{1153090273}a^{4}-\frac{16391768340}{1153090273}a^{3}+\frac{300373109241}{1153090273}a^{2}-\frac{268088347466}{1153090273}a+\frac{53568763789}{1153090273}$, $\frac{16868225}{84372459}a^{11}-\frac{43676542}{84372459}a^{10}+\frac{3255570}{28124153}a^{9}-\frac{259167482}{84372459}a^{8}+\frac{1045319477}{84372459}a^{7}-\frac{386003090}{28124153}a^{6}+\frac{573705237}{28124153}a^{5}-\frac{1353520045}{28124153}a^{4}-\frac{643110322}{84372459}a^{3}+\frac{11710460027}{84372459}a^{2}-\frac{10589229941}{84372459}a+\frac{2134998803}{84372459}$, $\frac{620101583}{1153090273}a^{11}-\frac{2092776786}{1153090273}a^{10}+\frac{702900161}{1153090273}a^{9}-\frac{8959482835}{1153090273}a^{8}+\frac{47166748516}{1153090273}a^{7}-\frac{56449513969}{1153090273}a^{6}+\frac{66846335381}{1153090273}a^{5}-\frac{192438818611}{1153090273}a^{4}+\frac{13753058628}{1153090273}a^{3}+\frac{534489086973}{1153090273}a^{2}-\frac{515561083787}{1153090273}a+\frac{103232906217}{1153090273}$
|
| |
| Regulator: | \( 15543.9677994 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 15543.9677994 \cdot 1}{2\cdot\sqrt{56593444029595648}}\cr\approx \mathstrut & 0.814682310357 \end{aligned}\]
Galois group
$C_6^2:C_4$ (as 12T82):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_6^2:C_4$ |
| Character table for $C_6^2:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.7168.1, 6.2.802816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 12.4.1154968245501952.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{5}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.10a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 2$ | $4$ | $1$ | $10$ | $D_{4}$ | $$[2, 3, \frac{7}{2}]$$ |
| 2.1.8.26c1.11 | $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 2$ | $8$ | $1$ | $26$ | $C_2^2:C_4$ | $$[2, 3, \frac{7}{2}, 4]$$ | |
|
\(7\)
| 7.3.2.3a1.2 | $x^{6} + 12 x^{5} + 36 x^{4} + 8 x^{3} + 48 x^{2} + 23$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |
| 7.2.3.4a1.1 | $x^{6} + 18 x^{5} + 117 x^{4} + 324 x^{3} + 351 x^{2} + 169 x + 27$ | $3$ | $2$ | $4$ | $C_6$ | $$[\ ]_{3}^{2}$$ |