Normalized defining polynomial
\( x^{12} - 2 x^{11} + 11 x^{10} - 20 x^{9} + 30 x^{8} - 52 x^{7} - 11 x^{6} + 3 x^{5} - 65 x^{4} + \cdots + 1 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[4, 4]$ |
| |
| Discriminant: |
\(1240804736328125\)
\(\medspace = 5^{11}\cdot 71^{4}\)
|
| |
| Root discriminant: | \(18.11\) |
| |
| Galois root discriminant: | $5^{11/12}71^{3/4}\approx 106.94642350747239$ | ||
| Ramified primes: |
\(5\), \(71\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{1643293409}a^{11}-\frac{558653895}{1643293409}a^{10}+\frac{788035058}{1643293409}a^{9}+\frac{158917792}{1643293409}a^{8}+\frac{692978894}{1643293409}a^{7}-\frac{262585762}{1643293409}a^{6}+\frac{305038149}{1643293409}a^{5}-\frac{328767758}{1643293409}a^{4}+\frac{223547089}{1643293409}a^{3}-\frac{170223947}{1643293409}a^{2}+\frac{177357141}{1643293409}a-\frac{258156454}{1643293409}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{25656}{684991}a^{11}-\frac{37074}{684991}a^{10}+\frac{247224}{684991}a^{9}-\frac{338756}{684991}a^{8}+\frac{431102}{684991}a^{7}-\frac{810043}{684991}a^{6}-\frac{1098761}{684991}a^{5}-\frac{133754}{684991}a^{4}-\frac{1408984}{684991}a^{3}+\frac{709873}{684991}a^{2}+\frac{154912}{684991}a-\frac{435922}{684991}$, $\frac{229531150}{1643293409}a^{11}+\frac{445927331}{1643293409}a^{10}-\frac{2518980862}{1643293409}a^{9}+\frac{4496530814}{1643293409}a^{8}-\frac{6850967970}{1643293409}a^{7}+\frac{12066409011}{1643293409}a^{6}+\frac{2417793016}{1643293409}a^{5}+\frac{810537515}{1643293409}a^{4}+\frac{14351519058}{1643293409}a^{3}-\frac{18127837180}{1643293409}a^{2}+\frac{13434140776}{1643293409}a+\frac{954224023}{1643293409}$, $\frac{178772022}{1643293409}a^{11}+\frac{334872992}{1643293409}a^{10}-\frac{1946166543}{1643293409}a^{9}+\frac{3374360168}{1643293409}a^{8}-\frac{5184636021}{1643293409}a^{7}+\frac{9138999755}{1643293409}a^{6}+\frac{2486912517}{1643293409}a^{5}+\frac{1110552246}{1643293409}a^{4}+\frac{11993120411}{1643293409}a^{3}-\frac{13644100668}{1643293409}a^{2}+\frac{8604427081}{1643293409}a+\frac{294079265}{1643293409}$, $\frac{399433444}{1643293409}a^{11}+\frac{753424731}{1643293409}a^{10}-\frac{4336973777}{1643293409}a^{9}+\frac{7532614082}{1643293409}a^{8}-\frac{11320771534}{1643293409}a^{7}+\frac{19674479456}{1643293409}a^{6}+\frac{6596124137}{1643293409}a^{5}-\frac{284587066}{1643293409}a^{4}+\frac{27105375043}{1643293409}a^{3}-\frac{28686365745}{1643293409}a^{2}+\frac{21647300486}{1643293409}a+\frac{6832206875}{1643293409}$, $\frac{13134969}{1643293409}a^{11}-\frac{5861788}{1643293409}a^{10}+\frac{94092186}{1643293409}a^{9}-\frac{34966530}{1643293409}a^{8}-\frac{130789211}{1643293409}a^{7}+\frac{107049634}{1643293409}a^{6}-\frac{1499130965}{1643293409}a^{5}+\frac{568005692}{1643293409}a^{4}-\frac{234654820}{1643293409}a^{3}+\frac{108197074}{1643293409}a^{2}+\frac{1800149777}{1643293409}a-\frac{1872824559}{1643293409}$, $\frac{46625576}{1643293409}a^{11}-\frac{102719277}{1643293409}a^{10}+\frac{533576964}{1643293409}a^{9}-\frac{1041933943}{1643293409}a^{8}+\frac{1553350177}{1643293409}a^{7}-\frac{2755301222}{1643293409}a^{6}-\frac{165497092}{1643293409}a^{5}-\frac{76210718}{1643293409}a^{4}-\frac{2271827167}{1643293409}a^{3}+\frac{3718560409}{1643293409}a^{2}-\frac{2235931584}{1643293409}a+\frac{312184338}{1643293409}$, $\frac{132146446}{1643293409}a^{11}+\frac{232153715}{1643293409}a^{10}-\frac{1412589579}{1643293409}a^{9}+\frac{2332426225}{1643293409}a^{8}-\frac{3631285844}{1643293409}a^{7}+\frac{6383698533}{1643293409}a^{6}+\frac{2321415425}{1643293409}a^{5}+\frac{1034341528}{1643293409}a^{4}+\frac{9721293244}{1643293409}a^{3}-\frac{9925540259}{1643293409}a^{2}+\frac{6368495497}{1643293409}a+\frac{2249557012}{1643293409}$
|
| |
| Regulator: | \( 418.7100827562533 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 418.7100827562533 \cdot 2}{2\cdot\sqrt{1240804736328125}}\cr\approx \mathstrut & 0.296415666577212 \end{aligned}\]
Galois group
$S_4^2:C_4$ (as 12T237):
| A solvable group of order 2304 |
| The 40 conjugacy class representatives for $S_4^2:C_4$ |
| Character table for $S_4^2:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 6.4.221875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | ${\href{/padicField/3.12.0.1}{12} }$ | R | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | ${\href{/padicField/17.4.0.1}{4} }^{3}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.12.0.1}{12} }$ | ${\href{/padicField/47.4.0.1}{4} }^{3}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.1.12.11a1.1 | $x^{12} + 5$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $$[\ ]_{12}^{2}$$ |
|
\(71\)
| 71.2.1.0a1.1 | $x^{2} + 69 x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 71.1.2.1a1.1 | $x^{2} + 71$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 71.1.4.3a1.2 | $x^{4} + 497$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
| 71.4.1.0a1.1 | $x^{4} + 4 x^{2} + 41 x + 7$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |