Show commands: Magma
Group invariants
| Abstract group: | $S_4^2:C_4$ |
| |
| Order: | $2304=2^{8} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $12$ |
| |
| Transitive number $t$: | $237$ |
| |
| CHM label: | $[2^{5}]F_{36}:2_{2}{S_{3}^{2},i}$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,12)(2,3)$, $(1,3,5,7)(2,4,6,12)(8,10,9,11)$, $(2,6,10)(3,7,11)$, $(4,8)(5,9)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ $72$: $C_3^2:D_4$ $144$: 12T79 $1152$: $S_4\wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $C_3^2:D_4$
Low degree siblings
12T237, 12T238 x 2, 16T1496 x 2, 16T1497 x 2, 24T5093 x 2, 24T5117 x 2, 24T5118 x 2, 24T5119, 24T5120 x 2, 24T5121 x 2, 24T5122 x 2, 24T5123 x 2, 24T5124, 24T5125 x 2, 24T5126 x 2, 24T5127 x 2, 24T5128 x 2, 32T205436 x 2, 32T205437 x 2, 32T205438, 32T205439, 36T3213 x 2, 36T3215 x 2, 36T3216 x 2, 36T3218, 36T3224, 36T3449 x 2, 36T3450 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6}$ | $1$ | $2$ | $6$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| 2B | $2^{2},1^{8}$ | $6$ | $2$ | $2$ | $( 6, 7)(10,11)$ |
| 2C | $2^{4},1^{4}$ | $6$ | $2$ | $4$ | $( 2, 3)( 6, 7)( 8, 9)(10,11)$ |
| 2D | $2^{4},1^{4}$ | $9$ | $2$ | $4$ | $( 1,12)( 4, 5)( 6, 7)(10,11)$ |
| 2E | $2^{2},1^{8}$ | $9$ | $2$ | $2$ | $( 8, 9)(10,11)$ |
| 2F | $2^{6}$ | $12$ | $2$ | $6$ | $( 1,12)( 2, 3)( 4, 5)( 6,11)( 7,10)( 8, 9)$ |
| 2G | $2^{2},1^{8}$ | $12$ | $2$ | $2$ | $( 2,10)( 3,11)$ |
| 2H | $2^{4},1^{4}$ | $36$ | $2$ | $4$ | $( 4, 5)( 6,10)( 7,11)( 8, 9)$ |
| 2I | $2^{4},1^{4}$ | $36$ | $2$ | $4$ | $( 4, 8)( 5, 9)( 6,10)( 7,11)$ |
| 2J | $2^{4},1^{4}$ | $36$ | $2$ | $4$ | $( 2, 3)( 6,10)( 7,11)( 8, 9)$ |
| 2K | $2^{6}$ | $36$ | $2$ | $6$ | $( 1, 9)( 2,10)( 3,11)( 4, 5)( 6, 7)( 8,12)$ |
| 3A | $3^{2},1^{6}$ | $16$ | $3$ | $4$ | $( 1, 8, 5)( 4,12, 9)$ |
| 3B | $3^{4}$ | $64$ | $3$ | $8$ | $( 1, 4, 8)( 2,10, 6)( 3,11, 7)( 5, 9,12)$ |
| 4A | $4,2,1^{6}$ | $12$ | $4$ | $4$ | $( 2, 3)( 6,11, 7,10)$ |
| 4B | $4,2^{3},1^{2}$ | $12$ | $4$ | $6$ | $( 1,12)( 2,11, 3,10)( 4, 5)( 8, 9)$ |
| 4C1 | $4^{3}$ | $24$ | $4$ | $9$ | $( 1,11,12,10)( 2, 8, 3, 9)( 4, 7, 5, 6)$ |
| 4C-1 | $4^{3}$ | $24$ | $4$ | $9$ | $( 1,10,12,11)( 2, 9, 3, 8)( 4, 6, 5, 7)$ |
| 4D | $4,2,1^{6}$ | $36$ | $4$ | $4$ | $( 6,10, 7,11)( 8, 9)$ |
| 4E | $4,2^{3},1^{2}$ | $36$ | $4$ | $6$ | $( 2, 3)( 4, 5)( 6,10, 7,11)( 8, 9)$ |
| 4F | $4^{2},2^{2}$ | $36$ | $4$ | $8$ | $( 1, 4,12, 5)( 2, 3)( 6,10, 7,11)( 8, 9)$ |
| 4G | $4^{2},1^{4}$ | $36$ | $4$ | $6$ | $( 2,11, 3,10)( 4, 8, 5, 9)$ |
| 4H | $4,2^{3},1^{2}$ | $72$ | $4$ | $6$ | $( 1,12)( 2, 6)( 3, 7)( 4, 8, 5, 9)$ |
| 4I | $4,2^{3},1^{2}$ | $72$ | $4$ | $6$ | $( 1, 5)( 2,10, 3,11)( 4,12)( 8, 9)$ |
| 4J1 | $4,2^{4}$ | $72$ | $4$ | $7$ | $( 1, 3)( 2,12)( 4, 7)( 5, 6)( 8,11, 9,10)$ |
| 4J-1 | $4,2^{4}$ | $72$ | $4$ | $7$ | $( 1, 3)( 2,12)( 4, 7)( 5, 6)( 8,10, 9,11)$ |
| 4K1 | $4^{3}$ | $144$ | $4$ | $9$ | $( 1, 2, 9,10)( 3, 8,11,12)( 4, 7, 5, 6)$ |
| 4K-1 | $4^{3}$ | $144$ | $4$ | $9$ | $( 1,10, 9, 2)( 3,12,11, 8)( 4, 6, 5, 7)$ |
| 6A | $6,2^{3}$ | $16$ | $6$ | $8$ | $( 1, 4, 8,12, 5, 9)( 2, 3)( 6, 7)(10,11)$ |
| 6B | $6,2,1^{4}$ | $48$ | $6$ | $6$ | $( 2, 6,10, 3, 7,11)( 8, 9)$ |
| 6C | $3^{2},2^{2},1^{2}$ | $48$ | $6$ | $6$ | $( 1, 9, 4)( 5,12, 8)( 6, 7)(10,11)$ |
| 6D | $6^{2}$ | $64$ | $6$ | $10$ | $( 1, 9, 4,12, 8, 5)( 2, 7,10, 3, 6,11)$ |
| 6E | $6,2^{3}$ | $96$ | $6$ | $8$ | $( 1, 9, 4,12, 8, 5)( 2, 3)( 6,11)( 7,10)$ |
| 6F | $3^{2},2^{2},1^{2}$ | $96$ | $6$ | $6$ | $( 1, 9, 4)( 2,10)( 3,11)( 5,12, 8)$ |
| 8A1 | $8,2^{2}$ | $144$ | $8$ | $9$ | $( 1, 7)( 2, 9,11, 4, 3, 8,10, 5)( 6,12)$ |
| 8A-1 | $8,2^{2}$ | $144$ | $8$ | $9$ | $( 1, 7)( 2, 5,10, 8, 3, 4,11, 9)( 6,12)$ |
| 12A | $4,3^{2},2$ | $96$ | $12$ | $8$ | $( 1, 4, 9)( 2, 3)( 5, 8,12)( 6,10, 7,11)$ |
| 12B | $6,4,1^{2}$ | $96$ | $12$ | $8$ | $( 1, 4, 8,12, 5, 9)( 2,10, 3,11)$ |
| 12C1 | $12$ | $192$ | $12$ | $11$ | $( 1, 6, 9,11, 4, 2,12, 7, 8,10, 5, 3)$ |
| 12C-1 | $12$ | $192$ | $12$ | $11$ | $( 1, 3, 5,10, 8, 7,12, 2, 4,11, 9, 6)$ |
Malle's constant $a(G)$: $1/2$
Character table
40 x 40 character table
Regular extensions
Data not computed