Normalized defining polynomial
\( x^{12} - 45x^{10} + 1050x^{8} - 13530x^{6} + 99685x^{4} - 328905x^{2} + 317520 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[4, 4]$ |
| |
| Discriminant: |
\(110764312692821648486328125\)
\(\medspace = 5^{11}\cdot 197^{8}\)
|
| |
| Root discriminant: | \(148.04\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(5\), \(197\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{3}-\frac{1}{4}a$, $\frac{1}{8}a^{4}-\frac{1}{8}a^{3}-\frac{1}{8}a^{2}-\frac{3}{8}a-\frac{1}{2}$, $\frac{1}{8}a^{5}+\frac{3}{8}a-\frac{1}{2}$, $\frac{1}{16}a^{6}-\frac{1}{8}a^{3}-\frac{1}{16}a^{2}-\frac{3}{8}a-\frac{1}{2}$, $\frac{1}{32}a^{7}-\frac{1}{32}a^{6}-\frac{1}{16}a^{5}-\frac{1}{16}a^{4}-\frac{3}{32}a^{3}+\frac{3}{32}a^{2}+\frac{1}{8}a$, $\frac{1}{64}a^{8}+\frac{1}{64}a^{6}+\frac{3}{64}a^{4}-\frac{1}{8}a^{3}+\frac{11}{64}a^{2}+\frac{1}{8}a-\frac{1}{4}$, $\frac{1}{384}a^{9}-\frac{1}{128}a^{8}-\frac{1}{128}a^{7}+\frac{3}{128}a^{6}+\frac{1}{128}a^{5}-\frac{3}{128}a^{4}+\frac{5}{128}a^{3}+\frac{17}{128}a^{2}-\frac{5}{24}a+\frac{3}{8}$, $\frac{1}{969984}a^{10}-\frac{109}{26944}a^{8}+\frac{937}{161664}a^{6}-\frac{4771}{80832}a^{4}-\frac{1}{8}a^{3}+\frac{235729}{969984}a^{2}-\frac{3}{8}a-\frac{3133}{6736}$, $\frac{1}{40739328}a^{11}-\frac{1}{1939968}a^{10}+\frac{13}{47152}a^{9}-\frac{39}{6736}a^{8}+\frac{14929}{969984}a^{7}-\frac{3463}{323328}a^{6}-\frac{51011}{1697472}a^{5}+\frac{491}{80832}a^{4}+\frac{3433645}{40739328}a^{3}+\frac{82547}{1939968}a^{2}+\frac{16357}{94304}a-\frac{1919}{13472}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{4}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{69959}{5092416}a^{11}+\frac{14801}{484992}a^{10}+\frac{77843}{141456}a^{9}-\frac{2057}{1684}a^{8}-\frac{1419881}{121248}a^{7}+\frac{2099903}{80832}a^{6}+\frac{54416471}{424368}a^{5}-\frac{5746639}{20208}a^{4}-\frac{3764265671}{5092416}a^{3}+\frac{795000461}{484992}a^{2}+\frac{62813833}{70728}a-\frac{6639237}{3368}$, $\frac{45919}{40739328}a^{11}+\frac{2395}{1939968}a^{10}-\frac{81155}{1131648}a^{9}+\frac{4175}{53888}a^{8}+\frac{1511737}{969984}a^{7}-\frac{761825}{323328}a^{6}-\frac{65741245}{3394944}a^{5}+\frac{6722765}{161664}a^{4}+\frac{3405941695}{40739328}a^{3}-\frac{394046045}{1939968}a^{2}-\frac{25482395}{282912}a+\frac{3018097}{13472}$, $\frac{3883}{2909952}a^{11}-\frac{6515}{969984}a^{10}+\frac{3089}{80832}a^{9}+\frac{6223}{26944}a^{8}-\frac{293947}{484992}a^{7}-\frac{683759}{161664}a^{6}+\frac{826111}{242496}a^{5}+\frac{2998997}{80832}a^{4}+\frac{1056677}{2909952}a^{3}-\frac{135087227}{969984}a^{2}-\frac{561391}{20208}a+\frac{1136431}{6736}$, $\frac{3241673}{40739328}a^{11}+\frac{193691}{1939968}a^{10}-\frac{977563}{282912}a^{9}-\frac{116833}{26944}a^{8}+\frac{75759185}{969984}a^{7}+\frac{31689089}{323328}a^{6}-\frac{1618535557}{1697472}a^{5}-\frac{48356303}{40416}a^{4}+\frac{261930613733}{40739328}a^{3}+\frac{15650236199}{1939968}a^{2}-\frac{4538643997}{282912}a-\frac{271187443}{13472}$, $\frac{6497}{5092416}a^{11}+\frac{119}{53888}a^{10}-\frac{53875}{1131648}a^{9}-\frac{6803}{53888}a^{8}+\frac{530657}{484992}a^{7}+\frac{177711}{53888}a^{6}-\frac{48621787}{3394944}a^{5}-\frac{2286817}{53888}a^{4}+\frac{1114421605}{10184832}a^{3}+\frac{7504375}{26944}a^{2}-\frac{2830847}{8841}a-\frac{960969}{1684}$, $\frac{1576985}{6789888}a^{11}-\frac{12275}{40416}a^{10}-\frac{2849767}{282912}a^{9}+\frac{361685}{26944}a^{8}+\frac{36459305}{161664}a^{7}-\frac{8039657}{26944}a^{6}-\frac{385991015}{141456}a^{5}+\frac{96169275}{26944}a^{4}+\frac{123776675861}{6789888}a^{3}-\frac{1891518175}{80832}a^{2}-\frac{6396625013}{141456}a+\frac{96367723}{1684}$, $\frac{2545}{5092416}a^{11}+\frac{12509}{969984}a^{10}+\frac{78157}{1131648}a^{9}-\frac{7723}{53888}a^{8}-\frac{943031}{484992}a^{7}-\frac{86369}{80832}a^{6}+\frac{76897525}{3394944}a^{5}+\frac{6132065}{161664}a^{4}-\frac{941776915}{10184832}a^{3}-\frac{189671905}{969984}a^{2}+\frac{3416249}{35364}a+\frac{1473693}{6736}$
|
| |
| Regulator: | \( 851508807.1406436 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 851508807.1406436 \cdot 2}{2\cdot\sqrt{110764312692821648486328125}}\cr\approx \mathstrut & 2.01757027978473 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 240 |
| The 14 conjugacy class representatives for $A_5:C_4$ |
| Character table for $A_5:C_4$ |
Intermediate fields
| 6.2.4706682753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equivalent siblings: | data not computed |
| Minimal sibling: | 12.4.110764312692821648486328125.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{2}{,}\,{\href{/padicField/2.2.0.1}{2} }{,}\,{\href{/padicField/2.1.0.1}{1} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.12.0.1}{12} }$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.4.0.1}{4} }^{3}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.1.12.11a1.4 | $x^{12} + 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $$[\ ]_{12}^{2}$$ |
|
\(197\)
| $\Q_{197}$ | $x + 195$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{197}$ | $x + 195$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 197.2.5.8a1.1 | $x^{10} + 960 x^{9} + 368650 x^{8} + 70786560 x^{7} + 6796984360 x^{6} + 261202401792 x^{5} + 13593968720 x^{4} + 283146240 x^{3} + 2949200 x^{2} + 15360 x + 229$ | $5$ | $2$ | $8$ | $F_5$ | $$[\ ]_{5}^{4}$$ |