Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $124$ | |
| Group : | $A_5:C_4$ | |
| CHM label : | $[2]L(6):2_{12}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4,6,8,10)(3,5,7,9,11), (1,3,12,2)(4,6,5,7)(8,11,9,10), (1,12)(2,3)(4,5)(6,7)(8,9)(10,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 120: $S_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: $\PGL(2,5)$
Low degree siblings
12T124, 20T66, 24T571, 24T578, 40T178, 40T179Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 4,10)( 5,11)( 6, 8)( 7, 9)$ |
| $ 4, 4, 2, 1, 1 $ | $30$ | $4$ | $( 2, 3)( 4, 7,10, 9)( 5, 6,11, 8)$ |
| $ 4, 4, 2, 1, 1 $ | $30$ | $4$ | $( 2, 3)( 4, 9,10, 7)( 5, 8,11, 6)$ |
| $ 5, 5, 1, 1 $ | $24$ | $5$ | $( 2, 4, 6, 8,10)( 3, 5, 7, 9,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 2)( 3,12)( 4, 5)( 6, 8)( 7, 9)(10,11)$ |
| $ 12 $ | $20$ | $12$ | $( 1, 2, 4,10, 7, 8,12, 3, 5,11, 6, 9)$ |
| $ 6, 6 $ | $20$ | $6$ | $( 1, 2, 5,12, 3, 4)( 6,11, 9, 7,10, 8)$ |
| $ 10, 2 $ | $24$ | $10$ | $( 1, 2, 6, 5, 9,12, 3, 7, 4, 8)(10,11)$ |
| $ 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 2, 6)( 3, 7,12)( 4,11, 9)( 5,10, 8)$ |
| $ 12 $ | $20$ | $12$ | $( 1, 2, 7, 8,10, 4,12, 3, 6, 9,11, 5)$ |
| $ 4, 4, 4 $ | $10$ | $4$ | $( 1, 2,12, 3)( 4, 7, 5, 6)( 8,10, 9,11)$ |
| $ 4, 4, 4 $ | $10$ | $4$ | $( 1, 2,12, 3)( 4, 9, 5, 8)( 6,10, 7,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
Group invariants
| Order: | $240=2^{4} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [240, 91] |
| Character table: |
2 4 4 3 3 1 4 2 2 1 2 2 3 3 4
3 1 . . . . . 1 1 . 1 1 1 1 1
5 1 . . . 1 . . . 1 . . . . 1
1a 2a 4a 4b 5a 2b 12a 6a 10a 3a 12b 4c 4d 2c
2P 1a 1a 2a 2a 5a 1a 6a 3a 5a 3a 6a 2c 2c 1a
3P 1a 2a 4b 4a 5a 2b 4d 2c 10a 1a 4c 4d 4c 2c
5P 1a 2a 4a 4b 1a 2b 12a 6a 2c 3a 12b 4c 4d 2c
7P 1a 2a 4b 4a 5a 2b 12b 6a 10a 3a 12a 4d 4c 2c
11P 1a 2a 4b 4a 5a 2b 12b 6a 10a 3a 12a 4d 4c 2c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 -1 1 1 1 -1 -1 -1 1
X.3 1 -1 A -A 1 1 -A -1 -1 1 A -A A -1
X.4 1 -1 -A A 1 1 A -1 -1 1 -A A -A -1
X.5 4 . . . -1 . 1 1 -1 1 1 -2 -2 4
X.6 4 . . . -1 . -1 1 -1 1 -1 2 2 4
X.7 4 . . . -1 . A -1 1 1 -A B -B -4
X.8 4 . . . -1 . -A -1 1 1 A -B B -4
X.9 5 1 -1 -1 . 1 1 -1 . -1 1 1 1 5
X.10 5 1 1 1 . 1 -1 -1 . -1 -1 -1 -1 5
X.11 5 -1 -A A . 1 -A 1 . -1 A -A A -5
X.12 5 -1 A -A . 1 A 1 . -1 -A A -A -5
X.13 6 -2 . . 1 -2 . . 1 . . . . 6
X.14 6 2 . . 1 -2 . . -1 . . . . -6
A = -E(4)
= -Sqrt(-1) = -i
B = 2*E(4)
= 2*Sqrt(-1) = 2i
|