Normalized defining polynomial
\( x^{12} - 4x^{9} + 12x^{8} + 2x^{6} - 72x^{5} + 12x^{4} + 100x^{3} - 132x^{2} + 96x - 23 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[4, 4]$ |
| |
| Discriminant: |
\(10271347716390912\)
\(\medspace = 2^{31}\cdot 3^{14}\)
|
| |
| Root discriminant: | \(21.59\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{2}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{9}-\frac{1}{8}a^{7}-\frac{1}{8}a^{6}-\frac{1}{4}a^{5}-\frac{3}{8}a^{4}-\frac{3}{8}a^{3}-\frac{1}{4}a^{2}-\frac{1}{8}a-\frac{3}{8}$, $\frac{1}{55845208}a^{11}-\frac{320653}{27922604}a^{10}-\frac{5629331}{55845208}a^{9}+\frac{3294471}{55845208}a^{8}-\frac{93727}{27922604}a^{7}+\frac{1584053}{55845208}a^{6}-\frac{3456441}{55845208}a^{5}+\frac{3598659}{13961302}a^{4}-\frac{20919835}{55845208}a^{3}-\frac{6703827}{55845208}a^{2}+\frac{755989}{13961302}a-\frac{7414083}{55845208}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2247}{60308}a^{11}-\frac{153}{60308}a^{10}-\frac{649}{30154}a^{9}-\frac{10047}{60308}a^{8}+\frac{27165}{60308}a^{7}+\frac{1002}{15077}a^{6}-\frac{7917}{60308}a^{5}-\frac{167163}{60308}a^{4}+\frac{8877}{15077}a^{3}+\frac{323433}{60308}a^{2}-\frac{269229}{60308}a+\frac{41325}{30154}$, $\frac{2474007}{55845208}a^{11}+\frac{1729393}{55845208}a^{10}+\frac{220290}{6980651}a^{9}-\frac{7947095}{55845208}a^{8}+\frac{24963611}{55845208}a^{7}+\frac{1719790}{6980651}a^{6}+\frac{24284611}{55845208}a^{5}-\frac{163624913}{55845208}a^{4}-\frac{32031111}{27922604}a^{3}+\frac{139437829}{55845208}a^{2}-\frac{245339511}{55845208}a+\frac{61805553}{27922604}$, $\frac{6322381}{55845208}a^{11}+\frac{2306023}{27922604}a^{10}+\frac{3959879}{55845208}a^{9}-\frac{21443557}{55845208}a^{8}+\frac{7650339}{6980651}a^{7}+\frac{42058721}{55845208}a^{6}+\frac{46894687}{55845208}a^{5}-\frac{51536097}{6980651}a^{4}-\frac{200416753}{55845208}a^{3}+\frac{465682841}{55845208}a^{2}-\frac{260783869}{27922604}a+\frac{218515149}{55845208}$, $\frac{1053796}{6980651}a^{11}+\frac{5793033}{55845208}a^{10}+\frac{2621753}{55845208}a^{9}-\frac{8503083}{13961302}a^{8}+\frac{78280073}{55845208}a^{7}+\frac{59648739}{55845208}a^{6}+\frac{26224741}{27922604}a^{5}-\frac{598394951}{55845208}a^{4}-\frac{304438081}{55845208}a^{3}+\frac{362410261}{27922604}a^{2}-\frac{450072467}{55845208}a+\frac{288787061}{55845208}$, $\frac{6898923}{55845208}a^{11}+\frac{482265}{13961302}a^{10}+\frac{198511}{55845208}a^{9}-\frac{27758771}{55845208}a^{8}+\frac{9312341}{6980651}a^{7}+\frac{22611815}{55845208}a^{6}+\frac{15967333}{55845208}a^{5}-\frac{249152425}{27922604}a^{4}-\frac{69477805}{55845208}a^{3}+\frac{698083119}{55845208}a^{2}-\frac{341505881}{27922604}a+\frac{471410939}{55845208}$, $\frac{3712311}{55845208}a^{11}+\frac{2763431}{55845208}a^{10}+\frac{113886}{6980651}a^{9}-\frac{13580821}{55845208}a^{8}+\frac{34493949}{55845208}a^{7}+\frac{15938669}{27922604}a^{6}+\frac{15922687}{55845208}a^{5}-\frac{250809559}{55845208}a^{4}-\frac{75548343}{27922604}a^{3}+\frac{363237151}{55845208}a^{2}-\frac{271222213}{55845208}a+\frac{15379839}{13961302}$, $\frac{6807341}{55845208}a^{11}+\frac{5798289}{55845208}a^{10}+\frac{1785925}{27922604}a^{9}-\frac{24304371}{55845208}a^{8}+\frac{62528845}{55845208}a^{7}+\frac{29331153}{27922604}a^{6}+\frac{47069353}{55845208}a^{5}-\frac{457014397}{55845208}a^{4}-\frac{35887484}{6980651}a^{3}+\frac{518215057}{55845208}a^{2}-\frac{470163501}{55845208}a+\frac{22515743}{13961302}$
|
| |
| Regulator: | \( 5596.71858495 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 5596.71858495 \cdot 1}{2\cdot\sqrt{10271347716390912}}\cr\approx \mathstrut & 0.688540062763 \end{aligned}\]
Galois group
$S_4^2:C_4$ (as 12T237):
| A solvable group of order 2304 |
| The 40 conjugacy class representatives for $S_4^2:C_4$ |
| Character table for $S_4^2:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 6.4.5971968.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.12.0.1}{12} }$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.12.0.1}{12} }$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.11a1.12 | $x^{4} + 8 x^{3} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $$[3, 4]$$ |
| 2.2.4.20a1.1 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 34 x^{2} + 16 x + 7$ | $4$ | $2$ | $20$ | $D_4\times C_2$ | $$[2, 3, \frac{7}{2}]^{2}$$ | |
|
\(3\)
| 3.2.6.14a1.2 | $x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2630 x^{6} + 3303 x^{5} + 3240 x^{4} + 2462 x^{3} + 1410 x^{2} + 567 x + 124$ | $6$ | $2$ | $14$ | $(C_3\times C_3):C_4$ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{2}$$ |