Normalized defining polynomial
\( x^{12} - 4 x^{11} + 4 x^{10} + 32 x^{9} - 52 x^{8} + 24 x^{7} + 128 x^{6} - 248 x^{5} + 27 x^{4} + \cdots - 94 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[2, 5]$ |
| |
| Discriminant: |
\(-396154108207169536\)
\(\medspace = -\,2^{36}\cdot 7^{8}\)
|
| |
| Root discriminant: | \(29.27\) |
| |
| Galois root discriminant: | $2^{27/8}7^{5/6}\approx 52.5078942662214$ | ||
| Ramified primes: |
\(2\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{9}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{930539534541}a^{11}-\frac{37059479836}{310179844847}a^{10}-\frac{32195894800}{930539534541}a^{9}+\frac{106297341686}{930539534541}a^{8}+\frac{65045401261}{930539534541}a^{7}+\frac{179527880651}{930539534541}a^{6}-\frac{79776595618}{930539534541}a^{5}-\frac{261878772407}{930539534541}a^{4}+\frac{237387519130}{930539534541}a^{3}+\frac{54707506441}{310179844847}a^{2}-\frac{344930809805}{930539534541}a+\frac{69960057875}{310179844847}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{12981535535}{310179844847}a^{11}-\frac{139164397048}{930539534541}a^{10}+\frac{92824321700}{930539534541}a^{9}+\frac{430619145080}{310179844847}a^{8}-\frac{1452941475097}{930539534541}a^{7}+\frac{146956523318}{930539534541}a^{6}+\frac{5028667586948}{930539534541}a^{5}-\frac{2400875508885}{310179844847}a^{4}-\frac{2978065928906}{930539534541}a^{3}+\frac{8907897661867}{930539534541}a^{2}-\frac{14025430275466}{930539534541}a+\frac{6035424850223}{930539534541}$, $\frac{574022}{431404513}a^{11}+\frac{3588503}{431404513}a^{10}-\frac{15840152}{431404513}a^{9}+\frac{20765955}{431404513}a^{8}+\frac{176448902}{431404513}a^{7}-\frac{103181844}{431404513}a^{6}-\frac{76798650}{431404513}a^{5}+\frac{660574961}{431404513}a^{4}-\frac{468662324}{431404513}a^{3}-\frac{866430973}{431404513}a^{2}+\frac{994996122}{431404513}a-\frac{468978389}{431404513}$, $\frac{6781948375}{930539534541}a^{11}-\frac{29548261322}{930539534541}a^{10}+\frac{20457411286}{930539534541}a^{9}+\frac{256470653231}{930539534541}a^{8}-\frac{143424306061}{310179844847}a^{7}-\frac{286488855146}{930539534541}a^{6}+\frac{1102670713790}{930539534541}a^{5}-\frac{519372988002}{310179844847}a^{4}-\frac{392702792742}{310179844847}a^{3}+\frac{3263662795349}{930539534541}a^{2}-\frac{1142941913770}{930539534541}a+\frac{427418790893}{310179844847}$, $\frac{16408096643}{930539534541}a^{11}-\frac{62054580934}{930539534541}a^{10}+\frac{46113474592}{930539534541}a^{9}+\frac{565852272052}{930539534541}a^{8}-\frac{759504292621}{930539534541}a^{7}+\frac{8739751831}{930539534541}a^{6}+\frac{2606126931542}{930539534541}a^{5}-\frac{3179555208128}{930539534541}a^{4}-\frac{384778280358}{310179844847}a^{3}+\frac{5855545898932}{930539534541}a^{2}-\frac{4339458203435}{930539534541}a+\frac{1450416215635}{930539534541}$, $\frac{4887850661}{930539534541}a^{11}-\frac{626804188}{310179844847}a^{10}-\frac{27151490348}{930539534541}a^{9}+\frac{55793876307}{310179844847}a^{8}+\frac{307566786034}{930539534541}a^{7}+\frac{7402334756}{930539534541}a^{6}+\frac{923749070371}{930539534541}a^{5}+\frac{424729053535}{310179844847}a^{4}-\frac{99788785106}{930539534541}a^{3}+\frac{673787907377}{930539534541}a^{2}+\frac{1033405925761}{930539534541}a-\frac{741998405911}{930539534541}$, $\frac{1104427672168}{930539534541}a^{11}-\frac{3743334196286}{930539534541}a^{10}+\frac{2085155340724}{930539534541}a^{9}+\frac{12250981198500}{310179844847}a^{8}-\frac{35029725219638}{930539534541}a^{7}+\frac{1187603747724}{310179844847}a^{6}+\frac{144417514881785}{930539534541}a^{5}-\frac{186061303109977}{930539534541}a^{4}-\frac{90294968505611}{930539534541}a^{3}+\frac{76366085992594}{310179844847}a^{2}-\frac{129886600080677}{310179844847}a+\frac{142886972006401}{930539534541}$
|
| |
| Regulator: | \( 13188.2300487 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 13188.2300487 \cdot 2}{2\cdot\sqrt{396154108207169536}}\cr\approx \mathstrut & 0.820755431164 \end{aligned}\]
Galois group
$C_6^2:C_4$ (as 12T82):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_6^2:C_4$ |
| Character table for $C_6^2:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.2.50176.1, 6.2.802816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 12.2.396154108207169536.5 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{3}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{5}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{5}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.10a1.1 | $x^{4} + 4 x^{3} + 2$ | $4$ | $1$ | $10$ | $D_{4}$ | $$[2, 3, \frac{7}{2}]$$ |
| 2.1.8.26c1.3 | $x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{3} + 2$ | $8$ | $1$ | $26$ | $C_2^2:C_4$ | $$[2, 3, \frac{7}{2}, 4]$$ | |
|
\(7\)
| 7.1.6.5a1.2 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |
| 7.3.2.3a1.1 | $x^{6} + 12 x^{5} + 36 x^{4} + 8 x^{3} + 48 x^{2} + 7 x + 16$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |