Normalized defining polynomial
\( x^{12} - 10x^{10} + 45x^{8} + 48x^{6} + 56x^{4} - 56x^{2} - 28 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[2, 5]$ |
| |
| Discriminant: |
\(-173317422340636672\)
\(\medspace = -\,2^{32}\cdot 7^{9}\)
|
| |
| Root discriminant: | \(27.33\) |
| |
| Galois root discriminant: | $2^{3}7^{5/6}\approx 40.48912147837109$ | ||
| Ramified primes: |
\(2\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{16}a^{8}+\frac{1}{8}a^{6}-\frac{1}{2}a^{5}+\frac{3}{16}a^{4}-\frac{1}{2}a^{3}+\frac{1}{8}$, $\frac{1}{16}a^{9}-\frac{1}{8}a^{7}-\frac{1}{4}a^{6}+\frac{7}{16}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{3}{8}a-\frac{1}{2}$, $\frac{1}{25888}a^{10}+\frac{309}{12944}a^{8}-\frac{1789}{25888}a^{6}+\frac{1549}{3236}a^{4}-\frac{1}{2}a^{3}+\frac{5489}{12944}a^{2}-\frac{1}{2}a+\frac{495}{1618}$, $\frac{1}{25888}a^{11}+\frac{309}{12944}a^{9}-\frac{1789}{25888}a^{7}+\frac{1549}{3236}a^{5}-\frac{1}{2}a^{4}+\frac{5489}{12944}a^{3}-\frac{1}{2}a^{2}+\frac{495}{1618}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}$, which has order $3$ |
| |
| Narrow class group: | $C_{6}$, which has order $6$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{51}{25888}a^{11}+\frac{103}{6472}a^{10}-\frac{421}{12944}a^{9}-\frac{533}{3236}a^{8}+\frac{5841}{25888}a^{7}+\frac{5039}{6472}a^{6}-\frac{1901}{3236}a^{5}+\frac{1505}{3236}a^{4}+\frac{1643}{12944}a^{3}+\frac{2303}{3236}a^{2}-\frac{2261}{1618}a+\frac{881}{1618}$, $\frac{103}{3236}a^{10}-\frac{533}{1618}a^{8}+\frac{5039}{3236}a^{6}+\frac{1505}{1618}a^{4}+\frac{2303}{1618}a^{2}+\frac{72}{809}$, $\frac{281}{25888}a^{11}-\frac{107}{6472}a^{10}-\frac{169}{1618}a^{9}+\frac{1021}{6472}a^{8}+\frac{11815}{25888}a^{7}-\frac{4355}{6472}a^{6}+\frac{7389}{12944}a^{5}-\frac{8083}{6472}a^{4}+\frac{15017}{12944}a^{3}-\frac{3225}{3236}a^{2}+\frac{2215}{6472}a-\frac{613}{3236}$, $\frac{463}{25888}a^{11}+\frac{465}{12944}a^{10}-\frac{2553}{12944}a^{9}-\frac{4679}{12944}a^{8}+\frac{25997}{25888}a^{7}+\frac{20801}{12944}a^{6}-\frac{99}{809}a^{5}+\frac{25661}{12944}a^{4}+\frac{10855}{12944}a^{3}-\frac{819}{6472}a^{2}-\frac{690}{809}a-\frac{10401}{6472}$, $\frac{281}{25888}a^{11}+\frac{107}{6472}a^{10}-\frac{169}{1618}a^{9}-\frac{1021}{6472}a^{8}+\frac{11815}{25888}a^{7}+\frac{4355}{6472}a^{6}+\frac{7389}{12944}a^{5}+\frac{8083}{6472}a^{4}+\frac{15017}{12944}a^{3}+\frac{3225}{3236}a^{2}+\frac{2215}{6472}a+\frac{613}{3236}$, $\frac{859}{25888}a^{11}+\frac{1041}{25888}a^{10}-\frac{1983}{6472}a^{9}-\frac{5167}{12944}a^{8}+\frac{32709}{25888}a^{7}+\frac{46891}{25888}a^{6}+\frac{32313}{12944}a^{5}+\frac{5835}{3236}a^{4}+\frac{55211}{12944}a^{3}+\frac{44577}{12944}a^{2}+\frac{1111}{6472}a+\frac{771}{1618}$
|
| |
| Regulator: | \( 7226.98242316 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 7226.98242316 \cdot 3}{2\cdot\sqrt{173317422340636672}}\cr\approx \mathstrut & 1.01996784342 \end{aligned}\]
Galois group
$C_6^2:C_4$ (as 12T82):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_6^2:C_4$ |
| Character table for $C_6^2:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.2.1792.1, 6.2.39337984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 12.2.72185515343872.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{3}$ | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{3}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{5}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{5}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{5}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.8b1.6 | $x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $$[2, 3]$$ |
| 2.1.8.24c1.61 | $x^{8} + 8 x^{7} + 4 x^{6} + 2 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 14$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $$[2, 3, 4]$$ | |
|
\(7\)
| 7.1.3.2a1.1 | $x^{3} + 7$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 7.1.3.2a1.1 | $x^{3} + 7$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
| 7.1.6.5a1.4 | $x^{6} + 28$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |