Properties

Label 12.0.784...336.1
Degree $12$
Signature $[0, 6]$
Discriminant $7.844\times 10^{33}$
Root discriminant \(667.65\)
Ramified primes $2,3,23,37$
Class number $26969355$ (GRH)
Class group [3, 3, 3, 3, 332955] (GRH)
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 - 393*x^10 + 688*x^9 + 62187*x^8 + 97374*x^7 - 3967909*x^6 - 9955650*x^5 + 133133706*x^4 + 364479098*x^3 - 1900721436*x^2 - 1258966476*x + 27667585644)
 
gp: K = bnfinit(y^12 - 6*y^11 - 393*y^10 + 688*y^9 + 62187*y^8 + 97374*y^7 - 3967909*y^6 - 9955650*y^5 + 133133706*y^4 + 364479098*y^3 - 1900721436*y^2 - 1258966476*y + 27667585644, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 6*x^11 - 393*x^10 + 688*x^9 + 62187*x^8 + 97374*x^7 - 3967909*x^6 - 9955650*x^5 + 133133706*x^4 + 364479098*x^3 - 1900721436*x^2 - 1258966476*x + 27667585644);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 6*x^11 - 393*x^10 + 688*x^9 + 62187*x^8 + 97374*x^7 - 3967909*x^6 - 9955650*x^5 + 133133706*x^4 + 364479098*x^3 - 1900721436*x^2 - 1258966476*x + 27667585644)
 

\( x^{12} - 6 x^{11} - 393 x^{10} + 688 x^{9} + 62187 x^{8} + 97374 x^{7} - 3967909 x^{6} + \cdots + 27667585644 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(7844482483973372433572592070830336\) \(\medspace = 2^{8}\cdot 3^{16}\cdot 23^{6}\cdot 37^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(667.65\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}3^{4/3}23^{1/2}37^{5/6}\approx 667.6471889561029$
Ramified primes:   \(2\), \(3\), \(23\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{32}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}$, $\frac{1}{6}a^{9}-\frac{1}{2}a^{5}+\frac{1}{3}a^{3}$, $\frac{1}{10466394}a^{10}-\frac{285284}{5233197}a^{9}+\frac{437041}{3488798}a^{8}-\frac{524949}{3488798}a^{7}+\frac{99626}{1744399}a^{6}-\frac{1005217}{3488798}a^{5}+\frac{30206}{73707}a^{4}-\frac{1184965}{5233197}a^{3}+\frac{5803}{1744399}a^{2}+\frac{789877}{1744399}a+\frac{121525}{1744399}$, $\frac{1}{13\!\cdots\!58}a^{11}-\frac{85\!\cdots\!33}{22\!\cdots\!43}a^{10}+\frac{10\!\cdots\!97}{13\!\cdots\!58}a^{9}-\frac{25\!\cdots\!51}{45\!\cdots\!86}a^{8}+\frac{89\!\cdots\!08}{22\!\cdots\!43}a^{7}+\frac{33\!\cdots\!80}{22\!\cdots\!43}a^{6}-\frac{33\!\cdots\!77}{13\!\cdots\!58}a^{5}-\frac{14\!\cdots\!45}{45\!\cdots\!86}a^{4}-\frac{59\!\cdots\!81}{13\!\cdots\!58}a^{3}+\frac{39\!\cdots\!06}{22\!\cdots\!43}a^{2}-\frac{93\!\cdots\!67}{22\!\cdots\!43}a+\frac{13\!\cdots\!33}{15\!\cdots\!93}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $3$

Class group and class number

$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{332955}$, which has order $26969355$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{61848826564852}{96\!\cdots\!11}a^{11}+\frac{649169844801682}{96\!\cdots\!11}a^{10}+\frac{22\!\cdots\!76}{96\!\cdots\!11}a^{9}-\frac{57\!\cdots\!18}{32\!\cdots\!37}a^{8}-\frac{10\!\cdots\!54}{32\!\cdots\!37}a^{7}+\frac{45\!\cdots\!09}{32\!\cdots\!37}a^{6}+\frac{19\!\cdots\!17}{96\!\cdots\!11}a^{5}-\frac{63\!\cdots\!13}{96\!\cdots\!11}a^{4}-\frac{55\!\cdots\!95}{96\!\cdots\!11}a^{3}+\frac{48\!\cdots\!68}{32\!\cdots\!37}a^{2}+\frac{13\!\cdots\!74}{32\!\cdots\!37}a-\frac{82\!\cdots\!81}{21\!\cdots\!87}$, $\frac{17\!\cdots\!52}{67\!\cdots\!29}a^{11}-\frac{14\!\cdots\!16}{67\!\cdots\!29}a^{10}-\frac{24\!\cdots\!21}{22\!\cdots\!43}a^{9}+\frac{15\!\cdots\!77}{22\!\cdots\!43}a^{8}+\frac{36\!\cdots\!35}{22\!\cdots\!43}a^{7}-\frac{23\!\cdots\!65}{45\!\cdots\!86}a^{6}-\frac{13\!\cdots\!89}{13\!\cdots\!58}a^{5}+\frac{33\!\cdots\!95}{13\!\cdots\!58}a^{4}+\frac{12\!\cdots\!43}{45\!\cdots\!86}a^{3}-\frac{13\!\cdots\!68}{22\!\cdots\!43}a^{2}-\frac{63\!\cdots\!71}{22\!\cdots\!43}a+\frac{21\!\cdots\!51}{15\!\cdots\!93}$, $\frac{15\!\cdots\!76}{67\!\cdots\!29}a^{11}-\frac{66\!\cdots\!06}{22\!\cdots\!43}a^{10}-\frac{48\!\cdots\!01}{67\!\cdots\!29}a^{9}+\frac{15\!\cdots\!10}{22\!\cdots\!43}a^{8}+\frac{22\!\cdots\!71}{22\!\cdots\!43}a^{7}-\frac{23\!\cdots\!25}{45\!\cdots\!86}a^{6}-\frac{76\!\cdots\!17}{13\!\cdots\!58}a^{5}+\frac{10\!\cdots\!83}{45\!\cdots\!86}a^{4}+\frac{19\!\cdots\!41}{13\!\cdots\!58}a^{3}-\frac{12\!\cdots\!36}{22\!\cdots\!43}a^{2}-\frac{91\!\cdots\!55}{22\!\cdots\!43}a+\frac{12\!\cdots\!83}{15\!\cdots\!93}$, $\frac{24\!\cdots\!63}{22\!\cdots\!43}a^{11}+\frac{53\!\cdots\!83}{45\!\cdots\!86}a^{10}+\frac{16\!\cdots\!43}{45\!\cdots\!86}a^{9}-\frac{12\!\cdots\!57}{45\!\cdots\!86}a^{8}-\frac{11\!\cdots\!78}{22\!\cdots\!43}a^{7}+\frac{84\!\cdots\!75}{45\!\cdots\!86}a^{6}+\frac{12\!\cdots\!57}{45\!\cdots\!86}a^{5}-\frac{37\!\cdots\!79}{45\!\cdots\!86}a^{4}-\frac{16\!\cdots\!85}{22\!\cdots\!43}a^{3}+\frac{49\!\cdots\!17}{22\!\cdots\!43}a^{2}+\frac{95\!\cdots\!66}{22\!\cdots\!43}a-\frac{50\!\cdots\!77}{15\!\cdots\!93}$, $\frac{33\!\cdots\!08}{67\!\cdots\!29}a^{11}+\frac{12\!\cdots\!60}{67\!\cdots\!29}a^{10}+\frac{42\!\cdots\!57}{22\!\cdots\!43}a^{9}+\frac{14\!\cdots\!73}{45\!\cdots\!86}a^{8}-\frac{59\!\cdots\!97}{22\!\cdots\!43}a^{7}-\frac{43\!\cdots\!17}{45\!\cdots\!86}a^{6}+\frac{13\!\cdots\!53}{13\!\cdots\!58}a^{5}+\frac{32\!\cdots\!51}{67\!\cdots\!29}a^{4}-\frac{60\!\cdots\!43}{45\!\cdots\!86}a^{3}-\frac{81\!\cdots\!42}{22\!\cdots\!43}a^{2}+\frac{68\!\cdots\!75}{22\!\cdots\!43}a+\frac{24\!\cdots\!07}{15\!\cdots\!93}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 207114.39572456083 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 207114.39572456083 \cdot 26969355}{2\cdot\sqrt{7844482483973372433572592070830336}}\cr\approx \mathstrut & 1.94020630580959 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 - 393*x^10 + 688*x^9 + 62187*x^8 + 97374*x^7 - 3967909*x^6 - 9955650*x^5 + 133133706*x^4 + 364479098*x^3 - 1900721436*x^2 - 1258966476*x + 27667585644)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 6*x^11 - 393*x^10 + 688*x^9 + 62187*x^8 + 97374*x^7 - 3967909*x^6 - 9955650*x^5 + 133133706*x^4 + 364479098*x^3 - 1900721436*x^2 - 1258966476*x + 27667585644, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 6*x^11 - 393*x^10 + 688*x^9 + 62187*x^8 + 97374*x^7 - 3967909*x^6 - 9955650*x^5 + 133133706*x^4 + 364479098*x^3 - 1900721436*x^2 - 1258966476*x + 27667585644);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 6*x^11 - 393*x^10 + 688*x^9 + 62187*x^8 + 97374*x^7 - 3967909*x^6 - 9955650*x^5 + 133133706*x^4 + 364479098*x^3 - 1900721436*x^2 - 1258966476*x + 27667585644);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 12T18):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_6\times S_3$
Character table for $C_6\times S_3$

Intermediate fields

\(\Q(\sqrt{-23}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{-851}) \), \(\Q(\sqrt{-23}, \sqrt{37})\), 6.6.7279451230032.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 18 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{2}$ ${\href{/padicField/7.6.0.1}{6} }^{2}$ ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{3}$ ${\href{/padicField/13.6.0.1}{6} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{2}$ ${\href{/padicField/19.6.0.1}{6} }^{2}$ R ${\href{/padicField/29.6.0.1}{6} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }^{2}$ R ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ ${\href{/padicField/43.6.0.1}{6} }^{2}$ ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{6}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ ${\href{/padicField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.4.2$x^{6} - 2 x^{3} + 4$$3$$2$$4$$S_3\times C_3$$[\ ]_{3}^{6}$
2.6.4.2$x^{6} - 2 x^{3} + 4$$3$$2$$4$$S_3\times C_3$$[\ ]_{3}^{6}$
\(3\) Copy content Toggle raw display 3.3.4.1$x^{3} + 6 x^{2} + 21$$3$$1$$4$$C_3$$[2]$
3.3.4.2$x^{3} + 6 x^{2} + 3$$3$$1$$4$$C_3$$[2]$
3.3.4.1$x^{3} + 6 x^{2} + 21$$3$$1$$4$$C_3$$[2]$
3.3.4.2$x^{3} + 6 x^{2} + 3$$3$$1$$4$$C_3$$[2]$
\(23\) Copy content Toggle raw display 23.12.6.1$x^{12} + 140 x^{10} + 18 x^{9} + 8092 x^{8} + 20 x^{7} + 244001 x^{6} - 56140 x^{5} + 4059563 x^{4} - 1721304 x^{3} + 36312468 x^{2} - 14694000 x + 141161628$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(37\) Copy content Toggle raw display 37.12.10.1$x^{12} + 198 x^{11} + 16347 x^{10} + 720720 x^{9} + 17919555 x^{8} + 239132718 x^{7} + 1363015503 x^{6} + 478272762 x^{5} + 72280395 x^{4} + 32212620 x^{3} + 653616987 x^{2} + 8608429962 x + 47259217318$$6$$2$$10$$C_6\times C_2$$[\ ]_{6}^{2}$